Assessing effects of economic factors on construction cost estimation using deep neural networks

估计 成本估算 估计员 人工神经网络 计算机科学 领域(数学) 项目管理 风险分析(工程) 运筹学 人工智能 工程类 业务 统计 数学 系统工程 纯数学
作者
Ran Wang,Vahid Asghari,Clara Cheung,Shu-Chien Hsu,Chia Jung Lee
出处
期刊:Automation in Construction [Elsevier]
卷期号:134: 104080-104080 被引量:18
标识
DOI:10.1016/j.autcon.2021.104080
摘要

There are numerous models proposed for construction cost estimation. Most of them are based on projects' characteristics only while neglecting the external economic factors. This may be partially because there is no consensus on the effects of the economic factors on construction cost estimation and little attention has been paid to incorporating the trend of economic factors into cost estimation. More importantly, there is a general lack of quantitative analysis. To explore those effects quantitatively, this study uses deep neural networks (DNN) as an estimator and SHapley Additive exPlanations (SHAP) as a model interpreter, adopting the data on 98 public school projects in Hong Kong SAR. The analysis is also verified by a comparison analysis using several machine learning models popular in construction cost estimation. The results indicate that the economic factors do play an important role in reducing the construction cost estimation errors and are even more important than projects' characteristics. The findings would be helpful for stakeholders in the field of construction engineering and management to make appropriate decisions and for researchers to unveil the actual degree of the effects of other influential factors on construction cost estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
安安发布了新的文献求助10
2秒前
都会完成签到 ,获得积分10
2秒前
被门夹到鸟完成签到,获得积分10
3秒前
3秒前
4秒前
赘婿应助微纳组刘同采纳,获得10
4秒前
7秒前
7秒前
快乐友易发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
追风完成签到,获得积分10
13秒前
单薄的香菇应助anan采纳,获得10
13秒前
Akim应助安安采纳,获得10
14秒前
14秒前
orixero应助微纳组刘同采纳,获得10
14秒前
YoungLee发布了新的文献求助10
16秒前
feifan123完成签到,获得积分10
16秒前
16秒前
枝枝完成签到,获得积分10
16秒前
科研通AI5应助90yied采纳,获得10
17秒前
17秒前
sensensmart发布了新的文献求助10
17秒前
希望天下0贩的0应助麓枫采纳,获得10
18秒前
卡尔发布了新的文献求助10
19秒前
深情安青应助快乐友易采纳,获得10
20秒前
科研通AI5应助ThoseRangers0624采纳,获得10
21秒前
22秒前
李健应助阳光的寻琴采纳,获得10
22秒前
Yxy发布了新的文献求助10
22秒前
坦率的跳跳糖完成签到 ,获得积分10
22秒前
科研通AI5应助繁星采纳,获得10
23秒前
Akim应助微纳组刘同采纳,获得10
23秒前
灰色头像完成签到,获得积分20
23秒前
25秒前
风中子轩应助舒心的铅笔采纳,获得10
27秒前
小鼠拯救者完成签到,获得积分10
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477079
求助须知:如何正确求助?哪些是违规求助? 3068557
关于积分的说明 9108573
捐赠科研通 2760002
什么是DOI,文献DOI怎么找? 1514563
邀请新用户注册赠送积分活动 700319
科研通“疑难数据库(出版商)”最低求助积分说明 699453