骨愈合
断裂(地质)
医学
计算机科学
外科
地质学
岩土工程
作者
Eric H. Ledet,Sydney M. Caparaso,Madelyn Stout,Keegan P. Cole,Benjamin Liddle,Nathaniel C. Cady,Michael T. Archdeacon
摘要
The diagnosis of fracture nonunion following plate osteosynthesis is subjective and frequently ambiguous. Initially following osteosynthesis, loads applied to the bone are primarily transmitted through the plate. However, as callus stiffness increases, the callus is able to bear load proportional to its stiffness while forces through the plate decrease. The purpose of this study was to use a "smart" fracture plate to distinguish between phases of fracture healing by measuring forces transmitted through the plate. A wireless force sensor and small adapter were placed on the outside of a distal femoral locking plate. The adapter converts the slight bending of the plate under axial load into a transverse force which is measurable by the sensor. An osteotomy was created and then plated in the distal femur of biomechanical Sawbones. Specimens were loaded to simulate single-leg stance first with the osteotomy defect empty (acute healing), then sequentially filled with silicone (early callus) and then polymethyl methacrylate (hard callus). There was a strong correlation between applied axial load and force measured by the "smart" plate. Data demonstrate statistically significant differences between each phase of healing with as little as 150 N of axial load applied to the femur. Forces measured in the plate were significantly different between acute (100%), early callus (66.4%), and hard callus (29.5%). This study demonstrates the potential of a "smart" fracture plate to distinguish between phases of healing. These objective data may enable early diagnosis of nonunion and enhance outcomes for patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI