上皮-间质转换
胰腺癌
癌症研究
转染
免疫印迹
间充质干细胞
下调和上调
细胞培养
细胞迁移
转移
生物
癌细胞
细胞
分子生物学
化学
癌症
细胞生物学
基因
生物化学
遗传学
作者
Ting Zheng,Wenfei Han,Aijun Wang,Yonggang Wang
出处
期刊:PeerJ
[PeerJ]
日期:2022-02-03
卷期号:10: e12802-e12802
被引量:5
摘要
Pancreatic cancer (PC) often correlates with high mortality due to late diagnosis, rapid metastasis, and resistance to chemotherapy. miR-128-3p has been validated as a tumor suppressor in PC. This study explored the functional mechanism of miR-128-3p in epithelial-mesenchymal transition (EMT) of PC cells. Four PC cancer cell lines with different degrees of malignancy and normal pancreatic cells were selected to detect expressions of hsa-miR-128-3p and ZEB1 by RT-qPCR and Western blot. miR-128-3p mimic or si-ZEB1 was delivered into PANC-1 cells and miR-128-3p inhibitor or oe-ZEB1 was delivered into AsPC-1 cells. Expressions of epithelial and mesenchymal markers were analyzed by Western blot and cell fluorescence staining. The binding relationship between miR-128-3p and ZEB1 was examined by bioinformatics analysis and dual-luciferase assay, and verified by RT-qPCR and Western blot. PC cell invasion and migration were assessed by Transwell assays. Generally, hsa-miR-128-3p was poorly-expressed in PC cells. However, it was relatively more expressed in AsPC-1 cells with epithelial phenotypes relative to PANC-1 cells with mesenchymal phenotype, whereas ZEB1 expression showed opposite tendencies. PANC-1 cells transfected with miR-128-3p mimic or si-ZEB1 showed upregulated E-cadherin and downregulated N-cadherin, and transformed from mesenchymal phenotypes to epithelial phenotypes, with decreased invasion and migration, while opposite results occurred in AsPC-1 cells transfected with miR-128-3p inhibitor or oe-ZEB1. miR-128-3p targeted ZEB1. oe-ZEB1 antagonized the inhibition of miR-128-3p mimic on PANC-1 cell EMT, invasion, and migration, while si-ZEB1 reversed the facilitation of miR-128-3p inhibitor in AsPC-1 cells. In conclusion, miR-128-3p inhibited PC cell EMT, invasion, and migration by targeting ZEB1.
科研通智能强力驱动
Strongly Powered by AbleSci AI