Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications

织物 材料科学 对偶(语法数字) 水分 可穿戴计算机 可穿戴技术 功率(物理) 计算机科学 灵活性(工程) 发电机(电路理论) 纳米技术 复合材料 嵌入式系统 艺术 文学类 物理 统计 量子力学 数学
作者
Wenya He,Haiyan Wang,Yaxin Huang,Tiancheng He,Fengyao Chi,Huhu Cheng,Dong Liu,Liming Dai,Liangti Qu
出处
期刊:Nano Energy [Elsevier]
卷期号:95: 107017-107017 被引量:69
标识
DOI:10.1016/j.nanoen.2022.107017
摘要

Moisture power generator (MEG) that can directly convert energy from environment into available clean electricity is ideally suitable to serve as a power source for portable devices and wearable electronics. However, the current MEG technology is lack of wearable capability and intrinsically associated with complicated fabrication processes, which have severely hindered its practical applications. Herein, we developed a facile process for the fabrication of textile-based moisture power generators (TMEGs) with a high flexibility. The newly-developed TMEGs exhibited a high open-circuit voltage of up to 1.0 V due to the rationally designed dual asymmetric structure to enhance the concentration difference of charge carriers for efficiently driving the diffusion of ions. Owing to its flexibility and superior performance, the TMEG could be used to construct a self-powered smart mask for monitoring of human’s respiration and as an efficient energy device for driving minitype electronics. More importantly, large-scale integration of TMEG units could be easily realized by directly printing electrodes array on 400 cm2 of asymmetric textile with screen-printing method, offering an enhanced electric output. Such integrated devices could be immobilized on a T-shirt as portable power source for supplying sufficient power to drive commercial wearable electronics. Compared to the existing power generation systems, therefore, TMEGs fabricated from such a simple fabrication process with all the aforementioned outstanding achievements hold promise for significant cost reduction, opening up new extensive applications as textile-based self-powered devices and wearable electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adi完成签到,获得积分10
刚刚
顾矜应助中心湖小海棠采纳,获得10
1秒前
1秒前
1秒前
oceanao应助受伤的绮山采纳,获得10
3秒前
yy完成签到,获得积分10
3秒前
TT发布了新的文献求助10
5秒前
zhaoxi完成签到 ,获得积分10
5秒前
温暖幻桃发布了新的文献求助10
7秒前
7秒前
顾矜应助Wendy采纳,获得10
8秒前
糕手小狗发布了新的文献求助10
10秒前
10秒前
lhb完成签到,获得积分10
12秒前
炙热的夜雪完成签到 ,获得积分10
13秒前
小秦秦完成签到 ,获得积分10
14秒前
tigger完成签到 ,获得积分10
14秒前
Qzy发布了新的文献求助10
16秒前
LEI完成签到,获得积分10
16秒前
33完成签到,获得积分10
16秒前
17秒前
17秒前
调研昵称发布了新的文献求助10
17秒前
20秒前
22秒前
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
不配.应助科研通管家采纳,获得10
22秒前
迷路芝麻发布了新的文献求助10
23秒前
shain完成签到,获得积分10
27秒前
wsx4321完成签到,获得积分10
28秒前
30秒前
充电宝应助难过的元容采纳,获得10
32秒前
无畏完成签到,获得积分10
32秒前
乔心发布了新的文献求助10
35秒前
35秒前
在水一方应助乔心采纳,获得10
39秒前
psy发布了新的文献求助10
41秒前
山山完成签到,获得积分20
44秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159813
求助须知:如何正确求助?哪些是违规求助? 2810709
关于积分的说明 7889177
捐赠科研通 2469823
什么是DOI,文献DOI怎么找? 1315112
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012