Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks

尖峰神经网络 计算机科学 人工神经网络 神经形态工程学 循环神经网络 人工智能 机器学习 领域(数学分析) 模式识别(心理学) 数学 数学分析
作者
Bojian Yin,Federico Corradi,Sander M. Bohté
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (10): 905-913 被引量:95
标识
DOI:10.1038/s42256-021-00397-w
摘要

Inspired by detailed modelling of biological neurons, spiking neural networks (SNNs) are investigated as biologically plausible and high-performance models of neural computation. The sparse and binary communication between spiking neurons potentially enables powerful and energy-efficient neural networks. The performance of SNNs, however, has remained lacking compared with artificial neural networks. Here we demonstrate how an activity-regularizing surrogate gradient combined with recurrent networks of tunable and adaptive spiking neurons yields the state of the art for SNNs on challenging benchmarks in the time domain, such as speech and gesture recognition. This also exceeds the performance of standard classical recurrent neural networks and approaches that of the best modern artificial neural networks. As these SNNs exhibit sparse spiking, we show that they are theoretically one to three orders of magnitude more computationally efficient compared to recurrent neural networks with similar performance. Together, this positions SNNs as an attractive solution for AI hardware implementations. The use of sparse signals in spiking neural networks, modelled on biological neurons, offers in principle a highly efficient approach for artificial neural networks when implemented on neuromorphic hardware, but new training approaches are needed to improve performance. Using a new type of activity-regularizing surrogate gradient for backpropagation combined with recurrent networks of tunable and adaptive spiking neurons, state-of-the-art performance for spiking neural networks is demonstrated on benchmarks in the time domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐若楠发布了新的文献求助20
刚刚
在水一方应助tianchanghao采纳,获得10
1秒前
共享精神应助狄谷南采纳,获得10
1秒前
Lin完成签到,获得积分10
1秒前
2秒前
moooonu发布了新的文献求助10
4秒前
小二郎应助C2采纳,获得10
4秒前
陈旭阳发布了新的文献求助10
4秒前
健忘的小懒虫关注了科研通微信公众号
5秒前
Owen应助调皮友安采纳,获得10
6秒前
科目三应助依古比古采纳,获得30
6秒前
llly完成签到,获得积分10
7秒前
7秒前
我是老大应助朴实云朵采纳,获得10
7秒前
加油呀发布了新的文献求助10
7秒前
dorothy_meng完成签到,获得积分10
9秒前
landforall_23完成签到,获得积分10
9秒前
rgjipeng完成签到,获得积分10
9秒前
9秒前
yunnguw发布了新的文献求助10
9秒前
moooonu完成签到,获得积分10
10秒前
11秒前
菲灵完成签到,获得积分10
12秒前
yzz完成签到,获得积分20
13秒前
狄谷南发布了新的文献求助10
14秒前
琉璃苣完成签到,获得积分10
14秒前
15秒前
随波逐流发布了新的文献求助10
15秒前
852应助鬼才之眼采纳,获得10
15秒前
16秒前
满当当完成签到 ,获得积分10
17秒前
17秒前
17秒前
18秒前
18秒前
jin完成签到,获得积分10
18秒前
TT发布了新的文献求助10
19秒前
科研通AI2S应助科研菜鸟采纳,获得10
19秒前
斯文的小鸭子完成签到,获得积分10
19秒前
hammer完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160609
求助须知:如何正确求助?哪些是违规求助? 2811828
关于积分的说明 7893452
捐赠科研通 2470647
什么是DOI,文献DOI怎么找? 1315718
科研通“疑难数据库(出版商)”最低求助积分说明 630929
版权声明 602052