Quantitative model of the relationship between dipeptidyl peptidase-4 (DPP-4) inhibition and response: meta-analysis of alogliptin, saxagliptin, sitagliptin, and vildagliptin efficacy results.

二肽基肽酶-4抑制剂 二肽基肽酶 肠促胰岛素 内科学 2型糖尿病 荟萃分析 二甲双胍 安慰剂
作者
John P. Gibbs,Jill Fredrickson,Todd Barbee,Itzela Correa,Brian H. Smith,Shao-Lee Lin,Megan A. Gibbs
出处
期刊:The Journal of Clinical Pharmacology [Wiley]
卷期号:52 (10): 1494-1505 被引量:31
标识
DOI:10.1177/0091270011420153
摘要

Dipeptidyl peptidase-4 (DPP-4) inhibition is a well- characterized treatment for type 2 diabetes mellitus (T2DM). The objective of this model-based meta-analysis was to describe the time course of HbA1c response after dosing with alogliptin (ALOG), saxagliptin (SAXA), sitagliptin (SITA), or vildagliptin (VILD). Publicly available data involving late-stage or marketed DPP-4 inhibitors were leveraged for the analysis. Nonlinear mixed-effects modeling was performed to describe the relationship between DPP-4 inhibition and mean response over time. Plots of the relationship between metrics of DPP-4 inhibition (ie, weighted average inhibition [WAI], time above 80% inhibition, and trough inhibition) and response after 12 weeks of daily dosing were evaluated. The WAI was most closely related to outcome, although other metrics performed well. A model was constructed that included fixed effects for placebo and drug and random effects for intertrial variability and residual error. The relationship between WAI and outcome was nonlinear, with an increasing response up to 98% WAI. Response to DPP-4 inhibitors could be described with a single drug effect. The WAI appears to be a useful index of DPP-4 inhibition related to HbA1c. Biomarker to response relationships informed by model-based meta-analysis can be leveraged to support study designs including optimization of dose, duration of therapy, and patient population.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助杨枝甘露樱桃采纳,获得10
1秒前
搜集达人应助zhuzhu采纳,获得20
1秒前
LiShin发布了新的文献求助10
2秒前
末岛发布了新的文献求助10
2秒前
2秒前
coffee完成签到,获得积分10
3秒前
李来仪发布了新的文献求助10
3秒前
长安完成签到,获得积分10
4秒前
Hao完成签到,获得积分10
4秒前
JamesPei应助王小志采纳,获得10
4秒前
詹密完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
酷波er应助NEMO采纳,获得10
7秒前
7秒前
7秒前
7秒前
情怀应助shirleeyeahe采纳,获得10
7秒前
8秒前
元元应助xzy采纳,获得20
8秒前
泥花完成签到,获得积分10
8秒前
247793325完成签到,获得积分20
8秒前
眼睛大的冰岚完成签到,获得积分10
8秒前
YY完成签到 ,获得积分10
8秒前
9秒前
雨天慢行完成签到,获得积分10
9秒前
韦威风发布了新的文献求助10
9秒前
科目三应助深情的不评采纳,获得10
9秒前
飞快的梦易完成签到,获得积分10
10秒前
Akim应助1b采纳,获得10
10秒前
末岛完成签到,获得积分10
10秒前
sweetbearm应助benben采纳,获得10
10秒前
10秒前
11秒前
科研通AI5应助今今采纳,获得10
11秒前
通~发布了新的文献求助10
11秒前
YY完成签到,获得积分10
11秒前
首席医官完成签到,获得积分10
12秒前
坚定迎天完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794