三阴性乳腺癌
癌症研究
基因沉默
小RNA
下调和上调
基因敲除
生物
转移
乳腺癌
癌症
细胞凋亡
基因
遗传学
作者
Gabriel Eades,Benjamin Wolfson,Yongshu Zhang,Qinglin Li,Yuan Yao,Qun Zhou
标识
DOI:10.1158/1541-7786.mcr-14-0251
摘要
Abstract Triple-negative (ER−, HER2−, PR−) breast cancer (TNBC) is an aggressive disease with a poor prognosis with no available molecularly targeted therapy. Silencing of microRNA-145 (miR-145) may be a defining marker of TNBC based on molecular profiling and deep sequencing. Therefore, the molecular mechanism behind miR-145 downregulation in TNBC was examined. Overexpression of the long intergenic noncoding RNA regulator of reprogramming, lincRNA-RoR, functions as a competitive endogenous RNA sponge in TNBC. Interestingly, lincRNA-RoR is dramatically upregulated in TNBC and in metastatic disease and knockdown restores miR-145 expression. Previous reports suggest that miR-145 has growth-suppressive activity in some breast cancers; however, these data in TNBC indicate that miR-145 does not affect proliferation or apoptosis but instead, miR-145 regulates tumor cell invasion. Investigation of miR-145-regulated pathways involved in tumor invasion revealed a novel target, the small GTPase ADP-ribosylation factor 6 (Arf6). Subsequent analysis demonstrated that ARF6, a known regulator of breast tumor cell invasion, is dramatically upregulated in TNBC and in breast tumor metastasis. Mechanistically, ARF6 regulates E-cadherin localization and affects cell–cell adhesion. These results reveal a lincRNA-RoR/miR-145/ARF6 pathway that regulates invasion in TNBCs. Implications: The lincRNA-RoR/miR-145/ARF6 pathway is critical to TNBC metastasis and could serve as biomarkers or therapeutic targets for improving survival. Mol Cancer Res; 13(2); 330–8. ©2014 AACR.
科研通智能强力驱动
Strongly Powered by AbleSci AI