伊曲康唑
微乳液
酮康唑
渗透
医学
体内
色谱法
材料科学
皮肤病科
药理学
肺表面活性物质
抗真菌
化学
生物技术
生物
生物化学
膜
标识
DOI:10.1016/j.ejps.2014.10.014
摘要
The study aims to statistically develop a microemulsion system of an antifungal agent, itraconazole for overcoming the shortcomings and adverse effects of currently used therapies. Following preformulation studies like solubility determination, component selection and pseudoternary phase diagram construction, a 3-factor D-optimal mixture design was used for optimizing a microemulsion having desirable formulation characteristics. The factors studied for sixteen experimental trials were percent contents (w/w) of water, oil and surfactant, whereas the responses investigated were globule size, transmittance, drug skin retention and drug skin permeation in 6 h. Optimized microemulsion (OPT-ME) was incorporated in Carbopol based hydrogel to improve topical applicability. Physical characterization of the formulations was performed using particle size analysis, transmission electron microscopy, texture analysis and rheology behavior. Ex vivo studies carried out in Wistar rat skin depicted that the optimized formulation enhanced drug skin retention and permeation in 6 h in comparison to conventional cream and Capmul 908P oil solution of itraconazole. The in vivo evaluation of optimized formulation was performed using a standardized Tinea pedis model in Wistar rats and the results of the pharmacodynamic study, obtained in terms of physical manifestations, fungal-burden score, histopathological profiles and oxidative stress. Rapid remission of Tinea pedis from rats treated with OPT-ME formulation was observed in comparison to commercially available therapies (ketoconazole cream and oral itraconazole solution), thereby indicating the superiority of microemulsion hydrogel formulation over conventional approaches for treating superficial fungal infections. The formulation was stable for a period of twelve months under refrigeration and ambient temperature conditions. All results, therefore, suggest that the OPT-ME can prove to be a promising and rapid alternative to conventional antifungal therapies against superficial fungal infections.
科研通智能强力驱动
Strongly Powered by AbleSci AI