Reproducible molecular networking of untargeted mass spectrometry data using GNPS

元数据 计算机科学 传播 数据科学 计算生物学 化学 万维网 生物 电信
作者
Allegra T. Aron,Emily C. Gentry,Kerry L. McPhail,Louis‐Félix Nothias,Mélissa Nothias-Esposito,Amina Bouslimani,Daniel Petras,Julia M. Gauglitz,Nicole Sikora,Fernando Vargas,Justin J. J. van der Hooft,Madeleine Ernst,Kyo Bin Kang,Christine M. Aceves,Andrés Mauricio Caraballo‐Rodríguez,Irina Koester,Kelly C. Weldon,Samuel Bertrand,Catherine Roullier,Kunyang Sun,Richard M. Tehan,Cristopher A. Boya P.,Christian Martin,Marcelino Gutiérrez,Aldo Moreno‐Ulloa,Javier Andres Tejeda Mora,Randy Mojica-Flores,Johant Lakey‐Beitia,Víctor Vásquez-Chaves,Yilue Zhang,Ángela I. Calderón,Nicole Tayler,Robert A. Keyzers,Fidele Tugizimana,Nombuso Ndlovu,Alexander A. Aksenov,Alan K. Jarmusch,Robin Schmid,Andrew W. Truman,Nuno Bandeira,Mingxun Wang,Pieter C. Dorrestein
出处
期刊:Nature Protocols [Springer Nature]
卷期号:15 (6): 1954-1991 被引量:440
标识
DOI:10.1038/s41596-020-0317-5
摘要

Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻祈完成签到,获得积分20
1秒前
Gauss应助kento采纳,获得100
1秒前
3秒前
娃哈哈发布了新的文献求助10
3秒前
vincen91发布了新的文献求助10
4秒前
4秒前
千万雷同发布了新的文献求助10
5秒前
5秒前
权千万发布了新的文献求助10
5秒前
LemonK完成签到,获得积分10
5秒前
夜空完成签到,获得积分20
6秒前
7秒前
zhangerdan完成签到,获得积分10
7秒前
科学家发布了新的文献求助10
8秒前
清a完成签到,获得积分10
8秒前
9秒前
LemonK发布了新的文献求助20
9秒前
英俊的铭应助高贵的往事采纳,获得10
9秒前
酷波er应助xiaoduan采纳,获得10
10秒前
搜集达人应助ljc采纳,获得10
12秒前
bycq完成签到,获得积分10
12秒前
深情安青应助才哥采纳,获得10
12秒前
13秒前
linlinzi发布了新的文献求助10
13秒前
木昜完成签到,获得积分10
14秒前
辣椒酱发布了新的文献求助10
14秒前
陆千万发布了新的文献求助10
14秒前
15秒前
娃哈哈完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
冰淇淋完成签到,获得积分10
17秒前
大个应助SF2768采纳,获得10
17秒前
李健的小迷弟应助Jia采纳,获得10
17秒前
kai0305完成签到,获得积分10
18秒前
夜空发布了新的文献求助30
18秒前
tian关注了科研通微信公众号
19秒前
现实的从蓉完成签到,获得积分20
20秒前
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685