Automated Algorithm Using Pre-Intervention Fractional Flow Reserve Pullback Curve to Predict Post-Intervention Physiological Results

拉回 算法 队列 部分流量储备 内科学 经皮冠状动脉介入治疗 医学 传统PCI 数学 心脏病学 数学分析 冠状动脉造影 心肌梗塞
作者
Seung Hun Lee,Doosup Shin,Joo Myung Lee,Adrien Lefieux,David Molony,Ki Hong Choi,Doyeon Hwang,Hyun‐Jong Lee,Ho‐Jun Jang,Hyun Kuk Kim,Sang Jin Ha,Jae-Jin Kwak,Taek Kyu Park,Jeong Hoon Yang,Young Bin Song,Joo‐Yong Hahn,Joon‐Hyung Doh,Eun‐Seok Shin,Chang‐Wook Nam,Bon‐Kwon Koo,Seung‐Hyuk Choi,Hyeon‐Cheol Gwon
出处
期刊:Jacc-cardiovascular Interventions [Elsevier]
卷期号:13 (22): 2670-2684 被引量:39
标识
DOI:10.1016/j.jcin.2020.06.062
摘要

Abstract Objectives This study sought to develop an automated algorithm using pre-percutaneous coronary intervention (PCI) fractional flow reserve (FFR) pullback recordings to predict post-PCI physiological results in the pre-PCI phase. Background Both FFR and percent FFR increase measured after PCI showed incremental prognostic implications. However, there is no current method to predict post-PCI physiological results using physiological assessment in the pre-PCI phase. Methods An automated algorithm that analyzes instantaneous FFR gradient per unit time (dFFR(t)/dt) was developed from the derivation cohort (n = 30). Using dFFR(t)/dt, the pattern of atherosclerotic disease in each patient was classified into 3 groups (major, mixed, and minor FFR gradient groups) in both the internal validation cohort with constant pullback method (n = 234) and the external validation cohort with nonstandardized pullback methods (n = 252). All patients in the validation cohorts underwent PCI on the basis of pre-PCI FFR ≤0.80. Suboptimal post-PCI physiological results were defined as both post-PCI FFR Results In validation cohorts, dFFR(t)/dt showed significant correlations with percent FFR increase (R = 0.801; p  Conclusions The automated algorithm analyzing pre-PCI pullback curve was able to predict post-PCI physiological results. The incidence of suboptimal post-PCI physiological results was significantly different according to algorithm-based classifications in the pre-PCI physiological assessment. (Automated Algorithm Detecting Physiologic Major Stenosis and Its Relationship with Post-PCI Clinical Outcomes [Algorithm-PCI]; NCT04304677 )
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助ll采纳,获得10
2秒前
2秒前
2秒前
斯文败类应助胡图图采纳,获得10
3秒前
幸福遥发布了新的文献求助10
5秒前
无限寒云发布了新的文献求助10
7秒前
8秒前
孤独的匕完成签到,获得积分10
8秒前
桂花酒酿完成签到,获得积分20
8秒前
善学以致用应助凹凸先森采纳,获得10
9秒前
袁鹏飞完成签到,获得积分10
9秒前
10秒前
11秒前
桂花酒酿发布了新的文献求助10
11秒前
12秒前
vsvsgo关注了科研通微信公众号
12秒前
CR完成签到 ,获得积分10
13秒前
13秒前
zhuang发布了新的文献求助10
14秒前
15秒前
孤独的匕发布了新的文献求助10
15秒前
15秒前
Akim应助珺宸采纳,获得200
20秒前
20秒前
moon完成签到 ,获得积分10
21秒前
莴苣完成签到,获得积分10
23秒前
24秒前
25秒前
何桶完成签到 ,获得积分10
25秒前
26秒前
LYF完成签到 ,获得积分10
27秒前
华仔应助KK采纳,获得10
27秒前
28秒前
csl发布了新的文献求助10
30秒前
沙克几十块完成签到,获得积分10
32秒前
哈哈哈发布了新的文献求助10
33秒前
42秒前
烟花应助STAR采纳,获得10
50秒前
wanci应助默默驳采纳,获得30
54秒前
圆圆酱发布了新的文献求助10
56秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259935
求助须知:如何正确求助?哪些是违规求助? 2901390
关于积分的说明 8315167
捐赠科研通 2570900
什么是DOI,文献DOI怎么找? 1396729
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631952