An accurate low-light object detection method based on pyramid networks

人工智能 计算机科学 目标检测 计算机视觉 棱锥(几何) 预处理器 对象类检测 光场 RGB颜色模型 对象(语法) Viola–Jones对象检测框架 模式识别(心理学) 人脸检测 数学 几何学 面部识别系统
作者
Qingyang Tao,Kun Ren,Feng Bao,Xuejin Gao
标识
DOI:10.1117/12.2573925
摘要

Low light object detection is a challenging problem in the field of computer vision and multimedia. Most available object detection methods are not accurate enough in low light conditions. The main idea of low light object detection is to add an image enhancement preprocessing module before the detection network. However, the traditional image enhancement algorithms may cause color loss, and the recent deep learning methods tend to take up too many computing resources. These methods are not suitable for low light object detection. We propose an accurate low light object detection method based on pyramid networks. A low-resolution pyramid enhancing light network is adopted to lessen computing and memory consumption. A super-resolution network based on attention mechanism is designed before Efficientdet to improve the detection accuracy. Experiments on the10K RAW-RGB low light image dataset show the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亻鱼发布了新的文献求助10
1秒前
脑洞疼应助成就的小熊猫采纳,获得10
1秒前
1秒前
waterclouds完成签到 ,获得积分10
1秒前
圆圈儿完成签到,获得积分10
1秒前
司空剑封完成签到,获得积分10
2秒前
2秒前
海棠yiyi完成签到,获得积分10
2秒前
2秒前
梁小鑫发布了新的文献求助10
2秒前
Jenny应助圈圈采纳,获得10
3秒前
内向青文完成签到,获得积分10
3秒前
lefora完成签到,获得积分10
3秒前
丰知然应助CO2采纳,获得10
4秒前
Zhihu完成签到,获得积分10
4秒前
feng完成签到,获得积分10
5秒前
5秒前
美丽稀完成签到,获得积分10
6秒前
PXY应助屁王采纳,获得10
6秒前
sunburst完成签到,获得积分10
6秒前
狼主完成签到 ,获得积分10
6秒前
吕亦寒完成签到,获得积分10
6秒前
junzilan发布了新的文献求助10
7秒前
ZL发布了新的文献求助10
7秒前
7秒前
亻鱼完成签到,获得积分10
7秒前
超级蘑菇完成签到 ,获得积分10
8秒前
8秒前
8秒前
congguitar完成签到,获得积分10
8秒前
9秒前
limof完成签到,获得积分20
9秒前
跳跃聪健发布了新的文献求助10
9秒前
168521kf完成签到,获得积分10
9秒前
10秒前
Avatar完成签到,获得积分10
10秒前
10秒前
小田完成签到,获得积分10
11秒前
JJJ应助大气沅采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740