Nested Network With Two-Stream Pyramid for Salient Object Detection in Optical Remote Sensing Images

计算机科学 突出 棱锥(几何) 人工智能 计算机视觉 对象(语法) 目标检测 遥感 模式识别(心理学) 光学 地质学 物理
作者
Chongyi Li,Runmin Cong,Junhui Hou,Sanyi Zhang,Yue Qian,Sam Kwong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (11): 9156-9166 被引量:82
标识
DOI:10.1109/tgrs.2019.2925070
摘要

Arising from the various object types and scales, diverse imaging orientations, and cluttered backgrounds in optical remote sensing image (RSI), it is difficult to directly extend the success of salient object detection for nature scene image to the optical RSI. In this paper, we propose an end-to-end deep network called LV-Net based on the shape of network architecture, which detects salient objects from optical RSIs in a purely data-driven fashion. The proposed LV-Net consists of two key modules, i.e., a two-stream pyramid module (L-shaped module) and an encoder-decoder module with nested connections (V-shaped module). Specifically, the L-shaped module extracts a set of complementary information hierarchically by using a two-stream pyramid structure, which is beneficial to perceiving the diverse scales and local details of salient objects. The V-shaped module gradually integrates encoder detail features with decoder semantic features through nested connections, which aims at suppressing the cluttered backgrounds and highlighting the salient objects. In addition, we construct the first publicly available optical RSI data set for salient object detection, including 800 images with varying spatial resolutions, diverse saliency types, and pixel-wise ground truth. Experiments on this benchmark data set demonstrate that the proposed method outperforms the state-of-the-art salient object detection methods both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
似乎一场梦完成签到,获得积分10
刚刚
garden发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
2秒前
demo1发布了新的文献求助10
2秒前
今后应助matlabma采纳,获得10
2秒前
彭于彦祖应助大力的老虎采纳,获得20
2秒前
CipherSage应助安静的水风采纳,获得10
2秒前
tufu发布了新的文献求助10
2秒前
TH1223完成签到,获得积分10
3秒前
3秒前
迷路凌柏完成签到 ,获得积分10
4秒前
zhao发布了新的文献求助10
5秒前
归尘发布了新的文献求助10
5秒前
orange发布了新的文献求助10
6秒前
彪壮的绮梅应助哎呦喂采纳,获得10
6秒前
雪白的南松完成签到,获得积分10
6秒前
zpt完成签到,获得积分10
6秒前
拼搏诗翠完成签到 ,获得积分10
7秒前
xs应助任性的不愁采纳,获得10
7秒前
大大小小发布了新的文献求助10
7秒前
科研通AI5应助000采纳,获得10
7秒前
suka完成签到,获得积分10
8秒前
佳俊发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
xiaopeng完成签到,获得积分20
11秒前
sheep完成签到,获得积分10
11秒前
sjj发布了新的文献求助10
11秒前
CipherSage应助ononon采纳,获得10
12秒前
gzh123发布了新的文献求助10
12秒前
Orange应助灵试巧开采纳,获得30
12秒前
20完成签到,获得积分10
13秒前
丘比特应助winwin采纳,获得10
13秒前
外向的芫完成签到,获得积分10
14秒前
TOM龙完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Host Response to Biomaterials 2000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553771
求助须知:如何正确求助?哪些是违规求助? 3129584
关于积分的说明 9383226
捐赠科研通 2828746
什么是DOI,文献DOI怎么找? 1555126
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267