聚类分析
主成分分析
图形
规范(哲学)
计算机科学
正规化(语言学)
矩阵范数
数据挖掘
数学
理论计算机科学
人工智能
特征向量
政治学
量子力学
物理
法学
作者
Yu Song,Xiang-Zhen Kong,Jin‐Xing Liu,Juan Wang,Shasha Yuan,Ling-Yun Dai
标识
DOI:10.1109/bibm49941.2020.9313423
摘要
In recent years, single-cell RNA sequencing (scRNA-seq) technology has made significant progress in many fields and become an important means to study cell dynamics. How to effectively mine valuable biological information from these sequencing data is a topic worthy of researching. In this paper, two new methods based on traditional principal component analysis (PCA) are proposed and used to scRNA-seq data. The first method named dual graph regularized PCA (DGPPCA) is based on Frobenius-norm and L 2,p -norm constraints, and the method named the dual graph-regularization PCA (DG2PPCA) is based on the nonconvex proximal Lp-norm ( 0 <; p <; 1) and the L 2,p -norm constraints. We apply these two new methods to five scRNA-seq datasets, and perform bi-clustering on genes and samples at the same time. Extensive experiments are conducted to explore the influence of the combination of different norm constraints in the two optimization models.
科研通智能强力驱动
Strongly Powered by AbleSci AI