Artificial Intelligence Model for Detection of Colorectal Cancer on Routine Abdominopelvic CT Examinations: A Training and External-Testing Study

医学 结直肠癌 癌症检测 放射科 医学物理学 结肠镜检查 癌症 内科学
作者
Seung‐seob Kim,Hyunseok Seo,Kihwan Choi,Sung‐Won Kim,Kyunghwa Han,Yeun‐Yoon Kim,Nieun Seo,Jae Bock Chung,Joon Seok Lim
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
标识
DOI:10.2214/ajr.24.32396
摘要

Background: Radiologists are prone to missing some colorectal cancers (CRCs) on routine abdominopelvic CT examinations that are in fact detectable on the images. Objective: To develop an artificial intelligence (AI) model to detect CRC on routine abdominopelvic CT examinations, performed without bowel preparation. Methods: This retrospective study included 3945 patients (2275 men, 1670 women; mean age, 62 years): a training set of 2662 patients from Severance Hospital with CRC who underwent routine contrast-enhanced abdominopelvic CT before treatment between January 2010 and December 2014; and internal (841 patients from Severance Hospital) and external (442 patients from Gangnam Severance Hospital) test sets of patients who underwent routine contrast-enhanced abdominopelvic CT for any indication and colonoscopy within a 2-month interval between January 2018 and June 2018. A radiologist, accessing colonoscopy reports, determined which CRCs were visible on CT and placed bounding boxes around lesions on all slices showing CRC, serving as the reference standard. A contemporary transformer-based object detection network was adapted and trained to create an AI model (https://github.com/boktae7/colorectaltumor) to automatically detect CT-visible CRC on unprocessed DICOM slices. AI performance was evaluated using alternative free-response ROC analysis, per-lesion sensitivity, and per-patient specificity; performance in the external test set was compared to that of two radiologist readers. Clinical radiology reports were also reviewed. Results: In the internal (93 CT-visible CRCs in 92 patients) and external (26 CT-visible CRCs in 26 patients) test sets, AI had AUC of 0.867 and 0.808, sensitivity of 79.6% and 80.8%, and specificity of 91.2% and 90.9%, respectively. In the external test set, the two radiologists had sensitivities of 73.1% and 80.8% (p=.74 and p>.99 vs AI) and specificities of 98.3% and 98.6% (both p<.001 vs AI); AI correctly detected five of nine CRCs missed by at least one reader. The clinical radiology reports raised suspicion for 75.9% of CRCs in the external test set. Conclusion: The findings demonstrate the AI model's utility for automated detection of CRC on routine abdominopelvic CT examinations. Clinical Impact: The AI model could help reduce the frequency of missed CRCs on routine examinations performed for reasons unrelated to CRC detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿莫西林皮蛋给阿莫西林皮蛋的求助进行了留言
刚刚
科研通AI5应助Zifflie采纳,获得10
1秒前
Blake完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
隐形曼青应助Mryuan采纳,获得10
2秒前
2秒前
本之上课发布了新的文献求助10
3秒前
3秒前
EastWind发布了新的文献求助10
3秒前
完美世界应助TT采纳,获得10
4秒前
4秒前
微笑的冬天完成签到,获得积分20
4秒前
脑洞疼应助Agoni采纳,获得10
5秒前
欣喜莫茗完成签到 ,获得积分10
5秒前
陈陌陌完成签到,获得积分10
5秒前
5秒前
旋转小菠萝完成签到,获得积分20
5秒前
丘比特应助ei123采纳,获得10
6秒前
zhangyafei发布了新的文献求助10
6秒前
janejane完成签到 ,获得积分10
6秒前
wanci应助Luminous1123采纳,获得10
7秒前
Cheetahhh发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
lllth发布了新的文献求助10
7秒前
小王发布了新的文献求助10
8秒前
Xin完成签到,获得积分10
8秒前
乐乐应助嗷嗷采纳,获得10
8秒前
9秒前
原野完成签到,获得积分10
9秒前
9秒前
充电宝应助谨慎晓灵采纳,获得10
10秒前
10秒前
xhtt发布了新的文献求助10
11秒前
11秒前
Max发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524700
求助须知:如何正确求助?哪些是违规求助? 3105580
关于积分的说明 9274782
捐赠科研通 2802664
什么是DOI,文献DOI怎么找? 1538126
邀请新用户注册赠送积分活动 716065
科研通“疑难数据库(出版商)”最低求助积分说明 709166