空气污染
环境科学
污染物
微粒
泊松回归
臭氧
相对风险
空气污染物
空气质量指数
污染
环境卫生
医学
置信区间
气象学
地理
化学
内科学
生物
人口
生态学
有机化学
作者
Xinyue Tian,Jing Zeng,Xuelin Li,Sheng Li,Tao Zhang,Ying Deng,Fei Yin,Yue Ma
标识
DOI:10.1007/s11356-023-31276-z
摘要
Air pollution is a major risk factor of cardiovascular disease (CVD). To date, limited studies have estimated the effects of ambient air pollution on CVD mortality using high-resolution exposure assessment, which might fail to capture the spatial variation in exposure and introduce bias in results. Besides, the three-year action plan (TYAP, 2018–2020) was released; thus, the constitution and health effect of air pollutants may have changed. In this study, we estimated the short-term effect exposed to particulate matters with parameter less than 2.5 µm (PM2.5) and ozone (O3) with 0.05° × 0.05° resolution on CVD mortality and measured the influence of TYAP in the associations. We used random forest models with spatial weight matrices to attain high-resolution pollutant concentrations and conditional Poisson regression to assess the relationship between air pollution and cardiovascular mortality. With an increase of 10 µg/m3 in PM2.5 and O3 during 2018–2021 in the Sichuan Basin (SCB), CVD mortality increased 1.0134 (95% CI 1.0102, 1.0166) and 1.0083 (95% CI 1.0060, 1.0107), respectively, using high-resolution air pollutant concentration, comparing to 1.0070 (95% CI 1.0052, 1.0087) and 1.0057 (95% CI 1.0037, 1.0078) using data from air quality monitoring stations (AQMs). After TYAP, the relative risk (RR) due to PM2.5 rose up to 1.0149 (95% CI 1.0054, 1.0243), and the RR due to O3 rose up to 1.0089 (95% CI 1.0030, 1.0148) in Sichuan Province. We found significantly positive association of cardiovascular mortality and air pollution in Sichuan Province. And using high-resolution exposure would be more accurate to estimate the effect of air pollution on CVD. After TYAP, the cardiovascular mortality risk estimation due to PM2.5 decreased in elderly in SCB, and the risk due to O3 increased in Sichuan Province.
科研通智能强力驱动
Strongly Powered by AbleSci AI