TLR-Net :Transfer Learning in Residual U-Net for Enhancing Skin Lesion Segmentation

网(多面体) 残余物 分割 人工智能 学习迁移 计算机科学 图像分割 模式识别(心理学) 数学 算法 几何学
作者
R P Aneesh,Joseph Zacharias
标识
DOI:10.1145/3627631.3627652
摘要

Skin lesion semantic segmentation is a critical task in dermatology, aiding early diagnosis and treatment of skin disorders, including melanoma and other forms of skin cancer. Challenge datasets in skin lesion segmentation play a pivotal role in advancing the field by providing standardised benchmarks, promoting collaboration, and facilitating the development of accurate and clinically relevant segmentation algorithms. This paper presents a novel approach to skin lesion segmentation, focusing on the development of a pretrained model for skin lesion segmentation, leveraging a challenging dataset. Transfer Learning in Residual U-Net (TLR-Net) is proposed in this paper to segment the skin lesions from dermoscopic images. It combines the power of transfer learning and the residual learning framework to achieve highly accurate and efficient skin lesion semantic segmentation. The TLR-Net leverages the U-Net's encoder-decoder architecture with skip connections for effective feature extraction and upsampling. Additionally, it incorporates residual blocks within the network to enable the learning of residual mappings, enabling deeper and more efficient feature extraction. Crucially, transfer learning is employed to initialise the model with pre-trained weights from a large-scale dataset, enhancing its ability to generalise skin lesion semantic segmentation tasks with limited labelled data. We evaluated the TLR-Net on a diverse and challenging skin lesion dataset, demonstrating its superior performance compared to traditional U-Net and other state-of-the-art segmentation architectures. Our results indicate that the TLR-Net provides more precise delineation of skin lesions, computationally efficient and suitable for real-world applications. This advancement has significant implications in dermatological practice, empowering clinicians with a reliable tool for early diagnosis and better patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助拉长的念珍采纳,获得10
1秒前
玥来玥好发布了新的文献求助10
2秒前
2秒前
不安毛豆发布了新的文献求助10
2秒前
2秒前
phy发布了新的文献求助10
5秒前
支凤妖发布了新的文献求助10
5秒前
cc完成签到,获得积分10
7秒前
阿蒙完成签到,获得积分10
7秒前
从容的烧鹅完成签到,获得积分20
8秒前
keke发布了新的文献求助30
8秒前
朱华彪完成签到,获得积分10
9秒前
香蕉觅云应助slim采纳,获得30
9秒前
10秒前
11秒前
14秒前
研途发布了新的文献求助10
14秒前
JamesPei应助聪慧的致远采纳,获得10
15秒前
李小强完成签到,获得积分10
17秒前
Mandy完成签到 ,获得积分10
18秒前
十一完成签到 ,获得积分10
18秒前
珂伟发布了新的文献求助10
19秒前
吉安娜完成签到,获得积分10
21秒前
23秒前
25秒前
微笑的梦柏完成签到,获得积分10
26秒前
27秒前
28秒前
肉肉肉完成签到,获得积分10
29秒前
29秒前
研友_汪老头完成签到,获得积分10
30秒前
北风语完成签到,获得积分10
30秒前
31秒前
31秒前
dengxu发布了新的文献求助10
32秒前
33秒前
33秒前
听雨发布了新的文献求助30
33秒前
俗人完成签到,获得积分10
34秒前
大帅比发布了新的文献求助10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312284
求助须知:如何正确求助?哪些是违规求助? 2944917
关于积分的说明 8522096
捐赠科研通 2620692
什么是DOI,文献DOI怎么找? 1432995
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650147