TLR-Net :Transfer Learning in Residual U-Net for Enhancing Skin Lesion Segmentation

网(多面体) 残余物 分割 人工智能 学习迁移 计算机科学 图像分割 模式识别(心理学) 数学 算法 几何学
作者
R P Aneesh,Joseph Zacharias
标识
DOI:10.1145/3627631.3627652
摘要

Skin lesion semantic segmentation is a critical task in dermatology, aiding early diagnosis and treatment of skin disorders, including melanoma and other forms of skin cancer. Challenge datasets in skin lesion segmentation play a pivotal role in advancing the field by providing standardised benchmarks, promoting collaboration, and facilitating the development of accurate and clinically relevant segmentation algorithms. This paper presents a novel approach to skin lesion segmentation, focusing on the development of a pretrained model for skin lesion segmentation, leveraging a challenging dataset. Transfer Learning in Residual U-Net (TLR-Net) is proposed in this paper to segment the skin lesions from dermoscopic images. It combines the power of transfer learning and the residual learning framework to achieve highly accurate and efficient skin lesion semantic segmentation. The TLR-Net leverages the U-Net's encoder-decoder architecture with skip connections for effective feature extraction and upsampling. Additionally, it incorporates residual blocks within the network to enable the learning of residual mappings, enabling deeper and more efficient feature extraction. Crucially, transfer learning is employed to initialise the model with pre-trained weights from a large-scale dataset, enhancing its ability to generalise skin lesion semantic segmentation tasks with limited labelled data. We evaluated the TLR-Net on a diverse and challenging skin lesion dataset, demonstrating its superior performance compared to traditional U-Net and other state-of-the-art segmentation architectures. Our results indicate that the TLR-Net provides more precise delineation of skin lesions, computationally efficient and suitable for real-world applications. This advancement has significant implications in dermatological practice, empowering clinicians with a reliable tool for early diagnosis and better patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
aslink完成签到,获得积分10
1秒前
1秒前
冷酷盼曼完成签到,获得积分10
2秒前
zh关闭了zh文献求助
2秒前
3秒前
细腻慕儿完成签到 ,获得积分10
3秒前
XUNGEER11完成签到,获得积分10
3秒前
3秒前
4秒前
小圆发布了新的文献求助10
4秒前
lipeng完成签到,获得积分10
4秒前
hf完成签到,获得积分10
5秒前
5秒前
英姑应助余甘木采纳,获得10
5秒前
风趣的胜应助王玉采纳,获得10
5秒前
5秒前
我是老大应助wwz采纳,获得10
5秒前
勤奋的琳完成签到,获得积分10
6秒前
Tomice发布了新的文献求助10
6秒前
ding应助能能鹤采纳,获得10
7秒前
enen发布了新的文献求助10
7秒前
周周发布了新的文献求助10
7秒前
所所应助听枫采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
香蕉觅云应助XUNGEER11采纳,获得10
8秒前
8秒前
扭扭车发布了新的文献求助10
8秒前
龙哥发布了新的文献求助10
9秒前
9秒前
洪亮完成签到,获得积分0
9秒前
10秒前
drfy123发布了新的文献求助10
10秒前
研友_VZG7GZ应助独特的苗条采纳,获得10
11秒前
11秒前
Little2发布了新的文献求助10
12秒前
盛夏之末应助太阳吖采纳,获得10
12秒前
星辰大海应助mrmrer采纳,获得10
12秒前
hhh完成签到,获得积分20
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199