TLR-Net :Transfer Learning in Residual U-Net for Enhancing Skin Lesion Segmentation

网(多面体) 残余物 分割 人工智能 学习迁移 计算机科学 图像分割 模式识别(心理学) 数学 算法 几何学
作者
R P Aneesh,Joseph Zacharias
标识
DOI:10.1145/3627631.3627652
摘要

Skin lesion semantic segmentation is a critical task in dermatology, aiding early diagnosis and treatment of skin disorders, including melanoma and other forms of skin cancer. Challenge datasets in skin lesion segmentation play a pivotal role in advancing the field by providing standardised benchmarks, promoting collaboration, and facilitating the development of accurate and clinically relevant segmentation algorithms. This paper presents a novel approach to skin lesion segmentation, focusing on the development of a pretrained model for skin lesion segmentation, leveraging a challenging dataset. Transfer Learning in Residual U-Net (TLR-Net) is proposed in this paper to segment the skin lesions from dermoscopic images. It combines the power of transfer learning and the residual learning framework to achieve highly accurate and efficient skin lesion semantic segmentation. The TLR-Net leverages the U-Net's encoder-decoder architecture with skip connections for effective feature extraction and upsampling. Additionally, it incorporates residual blocks within the network to enable the learning of residual mappings, enabling deeper and more efficient feature extraction. Crucially, transfer learning is employed to initialise the model with pre-trained weights from a large-scale dataset, enhancing its ability to generalise skin lesion semantic segmentation tasks with limited labelled data. We evaluated the TLR-Net on a diverse and challenging skin lesion dataset, demonstrating its superior performance compared to traditional U-Net and other state-of-the-art segmentation architectures. Our results indicate that the TLR-Net provides more precise delineation of skin lesions, computationally efficient and suitable for real-world applications. This advancement has significant implications in dermatological practice, empowering clinicians with a reliable tool for early diagnosis and better patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒猫发布了新的文献求助10
1秒前
满意黑夜发布了新的文献求助10
2秒前
radish完成签到,获得积分10
2秒前
2秒前
钱俊完成签到,获得积分10
2秒前
caj完成签到,获得积分10
3秒前
王359完成签到,获得积分10
3秒前
3秒前
大个应助重要纸飞机采纳,获得10
4秒前
4秒前
深情寒蕾发布了新的文献求助30
4秒前
amipc完成签到,获得积分20
5秒前
科研通AI5应助kuankuan采纳,获得10
5秒前
站住浩子应助忧伤的树叶采纳,获得10
5秒前
6秒前
7秒前
7秒前
一一发布了新的文献求助10
7秒前
沐秋之冬完成签到 ,获得积分10
8秒前
签到完成签到,获得积分10
9秒前
橙尘尘完成签到,获得积分10
10秒前
笨笨芯应助amipc采纳,获得10
10秒前
11秒前
桐桐应助懒猫采纳,获得10
11秒前
Y哦莫哦莫发布了新的文献求助10
12秒前
14秒前
舒心远侵发布了新的文献求助10
15秒前
幽默的乐双完成签到,获得积分10
15秒前
16秒前
林落完成签到,获得积分10
16秒前
17秒前
fd163c应助轻松的语蕊采纳,获得10
17秒前
18秒前
20秒前
20秒前
blue完成签到 ,获得积分10
22秒前
qujunming发布了新的文献求助10
22秒前
23秒前
wanci应助1234采纳,获得10
24秒前
shine完成签到 ,获得积分10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755384
求助须知:如何正确求助?哪些是违规求助? 3298445
关于积分的说明 10105664
捐赠科研通 3013093
什么是DOI,文献DOI怎么找? 1654979
邀请新用户注册赠送积分活动 789331
科研通“疑难数据库(出版商)”最低求助积分说明 753273