TLR-Net :Transfer Learning in Residual U-Net for Enhancing Skin Lesion Segmentation

网(多面体) 残余物 分割 人工智能 学习迁移 计算机科学 图像分割 模式识别(心理学) 数学 算法 几何学
作者
R P Aneesh,Joseph Zacharias
标识
DOI:10.1145/3627631.3627652
摘要

Skin lesion semantic segmentation is a critical task in dermatology, aiding early diagnosis and treatment of skin disorders, including melanoma and other forms of skin cancer. Challenge datasets in skin lesion segmentation play a pivotal role in advancing the field by providing standardised benchmarks, promoting collaboration, and facilitating the development of accurate and clinically relevant segmentation algorithms. This paper presents a novel approach to skin lesion segmentation, focusing on the development of a pretrained model for skin lesion segmentation, leveraging a challenging dataset. Transfer Learning in Residual U-Net (TLR-Net) is proposed in this paper to segment the skin lesions from dermoscopic images. It combines the power of transfer learning and the residual learning framework to achieve highly accurate and efficient skin lesion semantic segmentation. The TLR-Net leverages the U-Net's encoder-decoder architecture with skip connections for effective feature extraction and upsampling. Additionally, it incorporates residual blocks within the network to enable the learning of residual mappings, enabling deeper and more efficient feature extraction. Crucially, transfer learning is employed to initialise the model with pre-trained weights from a large-scale dataset, enhancing its ability to generalise skin lesion semantic segmentation tasks with limited labelled data. We evaluated the TLR-Net on a diverse and challenging skin lesion dataset, demonstrating its superior performance compared to traditional U-Net and other state-of-the-art segmentation architectures. Our results indicate that the TLR-Net provides more precise delineation of skin lesions, computationally efficient and suitable for real-world applications. This advancement has significant implications in dermatological practice, empowering clinicians with a reliable tool for early diagnosis and better patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
蒋时晏应助陶醉薯片采纳,获得30
2秒前
2秒前
执着的灯泡完成签到,获得积分10
2秒前
睡到自然醒完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
Musen完成签到,获得积分10
3秒前
科研通AI5应助叫滚滚采纳,获得10
3秒前
3秒前
123456发布了新的文献求助10
3秒前
大方安白发布了新的文献求助10
4秒前
Hello应助正直冰露采纳,获得10
4秒前
lyy完成签到 ,获得积分10
5秒前
沈随便发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
灵巧荆发布了新的文献求助10
6秒前
丘奇发布了新的文献求助10
6秒前
6秒前
6秒前
通~发布了新的文献求助10
7秒前
7秒前
搜集达人应助FloppyWow采纳,获得10
7秒前
Musen发布了新的文献求助10
7秒前
pluto应助金宝采纳,获得10
8秒前
ii完成签到 ,获得积分10
8秒前
温言发布了新的文献求助10
8秒前
CodeCraft应助务实盼海采纳,获得10
9秒前
orixero应助JUSTs0so采纳,获得10
9秒前
10秒前
欣欣子完成签到 ,获得积分10
10秒前
顺利毕业发布了新的文献求助10
10秒前
西奥完成签到 ,获得积分10
10秒前
11秒前
春分夏至完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762