电化学
化学
电解质
热稳定性
锂(药物)
热分解
化学工程
无机化学
电极
有机化学
物理化学
工程类
医学
内分泌学
作者
Yaqi Qin,Feng Yang,Shuaijie Jiang,Ming Lu,Pengcheng Wang
标识
DOI:10.1016/j.cej.2024.149968
摘要
In this article, electrochemical synthesis methods were used to construct a series of novel heat-resistant energetic materials with a tetracyclic structure bridged by azo-bis (1,2,4-triazole). From a molecular structure perspective, the synthesized 1,2-bis(5-(1H-tetrazol-5-yl)-1H-1,2,4-triazol-3-yl)-diazene (H4AzTT) exhibits zwitterionic properties and can exhibit a tetravalent structure when used as a nitrogen rich anion. In terms of physicochemical properties, H4AzTT and its energetic salts (M−AzTT) exhibit excellent energy performance and thermal stability due to its high nitrogen content and large conjugated structure. Among them, K4-AzTT·3H2O possess the highest decomposition temperature of 428 °C. Specifically, traditional chemical synthesis of tetracyclic structure may lead to ring breakage or by-products, while electrochemical synthesis methods are efficient and controllable, and allow for the direct synthesis of energetic salts (potassium, lithium, sodium, guanidine) by simply changing the electrolyte. Electrochemical testing and in situ ATR-SEIRAS analysis indicate that the electrochemical synthesis of M−AzTT precedes the OER (Oxygen Evolution Reaction). Therefore, a high yield of 65 % and a high Faraday efficiency of 81.5 % at 1.7 V vs. RHE were achieved under alkaline conditions. In summary, this study not only constructs super heat-resistant energetic compounds, but also represents a new breakthrough in the field of electrochemical synthesis of energetic materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI