Automatic preprocessing pipeline for white matter functional analyses of large-scale databases

计算机科学 预处理器 管道(软件) 人工智能 模式识别(心理学) 功能磁共振成像 神经科学 生物 程序设计语言
作者
Yurui Gao,Dylan R. Lawless,Muwei Li,Yu Zhao,Kurt G. Schilling,Lyuan Xu,Andrea T. Shafer,Lori L. Beason‐Held,Susan M. Resnick,Baxter P. Rogers,Zhaohua Ding,Adam W. Anderson,Bennett A. Landman,John C. Gore
标识
DOI:10.1117/12.2653132
摘要

Recently, increasing evidence suggests that fMRI signals in white matter (WM), conventionally ignored as nuisance, are robustly detectable using appropriate processing methods and are related to neural activity, while changes in WM with aging and degeneration are also well documented. These findings suggest variations in patterns of BOLD signals in WM should be investigated. However, existing fMRI analysis tools, which were designed for processing gray matter signals, are not well suited for large-scale processing of WM signals in fMRI data. We developed an automatic pipeline for high-performance preprocessing of fMRI images with emphasis on quantifying changes in BOLD signals in WM in an aging population. At the image processing level, the pipeline integrated existing software modules with fine parameter tunings and modifications to better extract weaker WM signals. The preprocessing results primarily included whole-brain time-courses, functional connectivity, maps and tissue masks in a common space. At the job execution level, this pipeline exploited a local XNAT to store datasets and results, while using DAX tool to automatic distribute batch jobs that run on high-performance computing clusters. Through the pipeline, 5,034 fMRI/T1 scans were preprocessed. The intraclass correlation coefficient (ICC) of test-retest experiment based on the preprocessed data is 0.52 - 0.86 (N=1000), indicating a high reliability of our pipeline, comparable to previously reported ICC in gray matter experiments. This preprocessing pipeline highly facilitates our future analyses on WM functional alterations in aging and may be of benefit to a larger community interested in WM fMRI studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馍夹菜完成签到,获得积分10
2秒前
2秒前
LiQi完成签到,获得积分10
2秒前
6秒前
科目三应助zhu采纳,获得10
10秒前
Shan发布了新的文献求助10
11秒前
12秒前
浮游应助闭眼听风雨采纳,获得10
13秒前
yyanxuemin919发布了新的文献求助10
14秒前
青葱鱼块完成签到 ,获得积分10
17秒前
浅沐发布了新的文献求助10
17秒前
3dyf发布了新的文献求助10
19秒前
20秒前
Keyto7应助Wenfeifei采纳,获得10
22秒前
丹D完成签到,获得积分10
23秒前
蒲云海发布了新的文献求助10
28秒前
28秒前
29秒前
29秒前
lessismore发布了新的文献求助10
31秒前
善学以致用应助kk采纳,获得10
31秒前
32秒前
33秒前
Ava应助合适的晓夏采纳,获得10
33秒前
34秒前
豆豆发布了新的文献求助10
34秒前
36秒前
dajiejie完成签到 ,获得积分10
37秒前
Keyto7应助Wenfeifei采纳,获得10
37秒前
38秒前
浮游应助楼梯口无头女孩采纳,获得10
38秒前
无辜之卉发布了新的文献求助10
39秒前
FJ发布了新的文献求助10
39秒前
大龙哥886应助科研通管家采纳,获得10
40秒前
BowieHuang应助科研通管家采纳,获得10
40秒前
小二郎应助科研通管家采纳,获得10
40秒前
40秒前
乐乐应助科研通管家采纳,获得10
40秒前
40秒前
CodeCraft应助豆豆采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563611
求助须知:如何正确求助?哪些是违规求助? 4648542
关于积分的说明 14685176
捐赠科研通 4590481
什么是DOI,文献DOI怎么找? 2518577
邀请新用户注册赠送积分活动 1491168
关于科研通互助平台的介绍 1462471