Effects of Automatic Hyperparameter Tuning on the Performance of Multi‐Variate Deep Learning‐Based Rainfall Nowcasting

临近预报 超参数 随机森林 计算机科学 阿达布思 单变量 机器学习 环境科学 气象学 气候学 多元统计 支持向量机 地理 地质学
作者
Amirmasoud Amini,Mehri Dolatshahi,Reza Kerachian
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1)
标识
DOI:10.1029/2022wr032789
摘要

Abstract Rainfall nowcasting has become increasingly important as we move into an era where more and more storms are occurring in many countries as a result of climate change. Developing an accurate rainfall nowcasting model could provide insights into rainfall dynamics and ultimately could prevent significant damages. In this paper, deep neural networks (DNNs) and numerical weather predictions (NWPs) are applied for rainfall and runoff forecasting in an urban catchment with a complex drainage system. DNNs are among the most accurate models for rainfall nowcasting. However, the design and training of DNNs are usually complicated. This paper combines different convolutional, long short‐term memory (LSTM)‐based networks and NWPs using ensemble techniques (i.e., bagging, random forest, and adaboost methods) with automatic hyperparameter tuning for multi‐step rainfall nowcasting. The relative humidity, air temperature, and previous rainfall sequences are considered the inputs of the DNNs. We focus on applying two hyperparameter tuning methods (i.e., random search and tree structured Parzen estimator) to improve the performance of the proposed rainfall nowcasting models. The proposed framework was applied to the eastern drainage catchment (EDC) in Tehran city. The results illustrate that the utilization of automatic hyperparameter tuning along with multivariate DNNs, NWPs, and ensemble techniques could improve the nowcasting performance (10%–25%) compared to the traditional univariate models. Also, Adaboost is more accurate than other ensemble techniques in predicting both extreme and normal rainfall events with average RMSE of 0.765, and random forest obtain better results when predict sub normal rainfall events with overall RMSE of 0.315. The proposed framework is applicable to different climates and catchments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司徒灵松完成签到,获得积分10
1秒前
CodeCraft应助最专业采纳,获得10
1秒前
笨笨水云关注了科研通微信公众号
1秒前
共享精神应助正直帆布鞋采纳,获得10
1秒前
珂珂完成签到,获得积分10
1秒前
青苹果完成签到,获得积分10
2秒前
kai发布了新的文献求助10
3秒前
3秒前
万能图书馆应助xiao采纳,获得30
4秒前
愉快之槐完成签到,获得积分10
4秒前
仁爱的秀珍菇完成签到,获得积分10
4秒前
4秒前
研友_ZeqRYZ完成签到,获得积分10
4秒前
4秒前
5秒前
研友_LJGmvn完成签到,获得积分10
5秒前
云烟发布了新的文献求助50
5秒前
5秒前
222完成签到,获得积分10
7秒前
7秒前
8秒前
烟花应助SinPain-采纳,获得10
8秒前
长生发布了新的文献求助10
8秒前
dovis完成签到,获得积分10
9秒前
桑丘子发布了新的文献求助10
10秒前
柒柒完成签到,获得积分10
11秒前
大模型应助周一斩采纳,获得10
11秒前
11秒前
12秒前
和谐煜祺完成签到,获得积分10
12秒前
哈哈发布了新的文献求助10
12秒前
苏信怜完成签到,获得积分10
12秒前
栗子发布了新的文献求助30
12秒前
13秒前
深情安青应助祗想静静嘚采纳,获得10
14秒前
15秒前
要开心发布了新的文献求助10
15秒前
Polly完成签到,获得积分10
15秒前
苏信怜发布了新的文献求助10
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942271
关于积分的说明 8507774
捐赠科研通 2617189
什么是DOI,文献DOI怎么找? 1430004
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186