Effects of Automatic Hyperparameter Tuning on the Performance of Multi‐Variate Deep Learning‐Based Rainfall Nowcasting

临近预报 超参数 随机森林 计算机科学 阿达布思 单变量 机器学习 环境科学 气象学 气候学 多元统计 支持向量机 地理 地质学
作者
Amirmasoud Amini,Mehri Dolatshahi,Reza Kerachian
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1)
标识
DOI:10.1029/2022wr032789
摘要

Abstract Rainfall nowcasting has become increasingly important as we move into an era where more and more storms are occurring in many countries as a result of climate change. Developing an accurate rainfall nowcasting model could provide insights into rainfall dynamics and ultimately could prevent significant damages. In this paper, deep neural networks (DNNs) and numerical weather predictions (NWPs) are applied for rainfall and runoff forecasting in an urban catchment with a complex drainage system. DNNs are among the most accurate models for rainfall nowcasting. However, the design and training of DNNs are usually complicated. This paper combines different convolutional, long short‐term memory (LSTM)‐based networks and NWPs using ensemble techniques (i.e., bagging, random forest, and adaboost methods) with automatic hyperparameter tuning for multi‐step rainfall nowcasting. The relative humidity, air temperature, and previous rainfall sequences are considered the inputs of the DNNs. We focus on applying two hyperparameter tuning methods (i.e., random search and tree structured Parzen estimator) to improve the performance of the proposed rainfall nowcasting models. The proposed framework was applied to the eastern drainage catchment (EDC) in Tehran city. The results illustrate that the utilization of automatic hyperparameter tuning along with multivariate DNNs, NWPs, and ensemble techniques could improve the nowcasting performance (10%–25%) compared to the traditional univariate models. Also, Adaboost is more accurate than other ensemble techniques in predicting both extreme and normal rainfall events with average RMSE of 0.765, and random forest obtain better results when predict sub normal rainfall events with overall RMSE of 0.315. The proposed framework is applicable to different climates and catchments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sutie发布了新的文献求助10
1秒前
2秒前
善学以致用应助背后海亦采纳,获得10
2秒前
拼搏的绿旋完成签到,获得积分10
2秒前
YIWENNN发布了新的文献求助10
4秒前
游一完成签到,获得积分10
4秒前
科研通AI5应助huk采纳,获得10
5秒前
虚拟莫茗完成签到 ,获得积分10
6秒前
刻苦小丸子完成签到,获得积分10
8秒前
8秒前
健壮听露完成签到,获得积分10
8秒前
苗条大叔发布了新的文献求助10
9秒前
9秒前
WK发布了新的文献求助10
11秒前
充电宝应助Muze采纳,获得10
11秒前
11秒前
11秒前
FashionBoy应助婳嬨采纳,获得10
12秒前
心想事成组完成签到,获得积分10
13秒前
JamesPei应助中央戏精学院采纳,获得10
14秒前
14秒前
Lucas应助健壮听露采纳,获得10
14秒前
可爱的函函应助顺心冰岚采纳,获得10
14秒前
背后海亦发布了新的文献求助10
15秒前
17秒前
18秒前
18秒前
18秒前
呱呱大菠萝完成签到,获得积分10
19秒前
小蘑菇应助jjj采纳,获得10
21秒前
努力的混子完成签到,获得积分10
21秒前
蓦然回首发布了新的文献求助10
22秒前
yaya发布了新的文献求助10
22秒前
23秒前
树阴照水完成签到,获得积分10
24秒前
cldg发布了新的文献求助10
26秒前
wuw666完成签到,获得积分10
26秒前
28秒前
Ava应助坏坏的快乐采纳,获得10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427