Vitamin D receptor activation in microglia suppresses NOX2‐mediated oxidative damage via PAT1 in vitro and in vivo

骨化三醇受体 小胶质细胞 骨化三醇 染色质免疫沉淀 神经保护 受体 免疫沉淀 维生素D结合蛋白 化学 分子生物学 细胞生物学 药理学 免疫学 基因表达 炎症 生物 维生素D与神经学 内分泌学 生物化学 发起人 基因
作者
Changshui Wang,Yahao Gao,Beibei Chen,Pei Jiang
出处
期刊:Clinical and translational medicine [Wiley]
卷期号:13 (1)
标识
DOI:10.1002/ctm2.1187
摘要

Vitamin D (VD) is established to have both neurotrophic and neuroprotective effects.1 Understanding the regulation of calcitriol (active form of VD)2 proteome may provide new insights into the neuroprotective mechanisms of calcitriol and could also provide fundamental new knowledge regarding the underlying molecular signalling. Proteomics analysis (Figure 1A) identified 7 up-regulated and 28 down-regulated proteins following calcitriol treatment in BV2 microglia (Log2FC ≥ .58 or Log2FC ≤ −.59, p < .05). Gene ontology functional annotation of differentially regulated proteins showed that they are involved in molecular functions, including cellular anatomical entity, biological regulation and binding (Figure 1B). In addition, KEGG pathway enrichment analysis demonstrated that proteins regulated in response to calcitriol administration were involved in immune responses and metabolism (Figure 1C). One of the most strongly down-regulated proteins was PAT1 (Log2FC = −1.218) (Figure 1D). The results of PAT1 protein expression were consistent with the proteomics findings (Figure 1E). In addition, VD receptor (VDR) expression was significantly increased following calcitriol treatment. Sequence and binding site analyses revealed that VDR was a candidate transcription factor regulator of the PAT1 promoter region (Figure 1F) and verified by luciferase assays and chromatin immunoprecipitation (Figure 1G,H). We found that calcitriol treatment markedly reduced luciferase activity, and that VDR can directly regulate PAT1 transcription. A recent study identified PAT1 as a potential partner of NOX2 in human neutrophils and monocytes, with an important role in the regulation of NADPH oxidase activation.3 To determine whether PAT1 also interacts with NOX2 in microglia,4 we performed immunoprecipitation analysis. Interestingly, PAT1 was detected in p22phox (the transmembrane subunits of NOX2) immunoprecipitates, whereas no PAT1 was detected in the control IgG group (Figure 1I). Additionally, Western blot analysis showed that calcitriol administration caused a significant decrease of PAT1/p22phox binding. We also observed co-localization of PAT1 and p22phox using confocal microscopy. Our data show that PAT1 was translocated to the plasma membrane and co-localized with p22phox when stimulated with lipopolysaccharide (LPS),5 whereas calcitriol administration significantly reduced this phenomenon (Figure 2A), suggesting that VDR activation inhibits PAT1 transcription and subsequently inhibits the interaction of PAT1 with NOX2. Next, we prepared extracts of cell components to evaluate the expression levels of related proteins in various subcellular locations. In response to LPS exposure, PAT1 levels at the membrane increased significantly. In parallel, membrane levels of the NADPH oxidase p47phox subunit were also increased following LPS stimulation, whereas PAT1 gene interference had a similar inhibitory effect on LPS-induced membrane translocation to calcitriol treatment (Figure 2B and Figure S1A–D). These results strongly support interaction between PAT1 and NOX2 and inhibition of this effect by calcitriol treatment. p47phox translocation from the cytosol to the membrane is a key step in the activation of NADPH oxidase, which produces reactive oxygen species.6 Intracellular ROS levels increased significantly after LPS treatment, whereas calcitriol pretreatment or PAT1 knockdown, markedly reduced ROS levels (Figure 2C). In addition, LPS treatment significantly increased the levels of malondialdehyde (MDA) and decreased the activity of superoxide dismutase (SOD) compared with controls, whereas these effects were reversed by calcitriol or PAT1 knockdown (Figure 2D). Subsequently, we examined the polarization state of microglia. Immunofluorescence and immunoblotting analysis showed that LPS induced microglia to promote M1 polarization and inhibit M2 polarization. Interestingly, calcitriol pretreatment or PAT1 deficiency induced the transformation of microglia from M1 to M2 phenotype (Figure 2E,F and Figure S1E,F). Immune responses in the brain are closely related to microglial polarization,7 and calcitriol addition or PAT1 silencing effectively decreased the mRNA expression levels of pro-inflammatory factors and increased those of anti-inflammatory factors (Figure 2G). Further, to determine whether calcitriol has a protective effect on neurons, we co-cultured neurons with microglia. Staining with the neuronal marker, NeuN, revealed that LPS treatment resulted in substantial neuronal loss and apoptosis, relative to the control group and NeuN-positive cells (Figure 2H) and TUNEL-positive cells (Figure S1H,G) were restored by calcitriol pretreatment or PAT1 silencing. Next, we investigated whether calcitriol can regulate PAT1 expression in C57BL/6J mice (Figure 3A). Interestingly, calcitriol treatment (.5 μg/kg/day by i.p. for 14 days) reduced PAT1 and NOX2 expression by LPS (1 mg/kg i.p. every other day for 14 days). Consistent with our in vitro findings, LPS stimulation decreased levels of p47phox in the cytosol but increased them in the membrane fraction. Further, calcitriol or PAT1 deficiency attenuated LPS-induced PAT1 and p47phox membrane translocation (Figure 3B and Figure S2A–F). Accordingly, calcitriol treatment or PAT1 deficiency significantly decreased NADPH oxidase activity induced by LPS. Moreover, calcitriol also decreased MDA levels and increased SOD and catalase activities (Figure 3C). These results suggested that VDR activation by calcitriol treatment suppresses the activity of NOX2 and alleviates oxidative stress via PAT1 inhibition. We then explored the neuroprotective effects of calcitriol in neuroimmune modulation.8 Intraperitoneal injection of LPS along with calcitriol significantly decreased the abundance of Iba-1-positive cells in the cortex of mice relative to treatment with LPS alone (Figure 3D). A general decrease in the expression of pro-inflammatory markers and an obvious increase in expression of anti-inflammatory markers were observed with calcitriol treatment (Figure 3E,F and Figure S2G–J). Furthermore, LPS induced an increase in TUNEL-reactive cells stained brown and a significant decrease in Nissl bodies in the cortex. Consistently, calcitriol treatment or PAT1 interference markedly relieved these effects and improved neuronal survival (Figure 3G). Neuronal damage is often accompanied by severe cognitive and behavioural impairment.9 Therefore, we evaluated the effect of calcitriol on the behaviour and cognitive functions of LPS-treated mice using behavioural tests. In terms of cognitive function, calcitriol treatment or PAT1 interference ameliorated LPS-induced increases in successfully reaching a hidden platform and was associated with more frequent platform crossing and longer time in the target quadrant after platform removal (Figure 4A,B and Figure S3A,B). Regarding mouse neurobehavioral abnormalities,10 LPS exposure resulted in decreased central exploration time in the open field test (Figure 4C and Figure S3C), a decrease in entry into the open arm of an elevated maze (Figure 4D and Figure S3D,E), decreased sugar water intake in the sucrose preference test (Figure 4E) and increased immobile time during forced swimming (Figure 4F). Interestingly, calcitriol treatment or PAT1 interference resulted in different degrees of behavioural abnormalities. Overall, our findings showed a novel neuro-activity of VD, which activates VDR and further mediates the inhibition of PAT1 transcription upon binding to the PAT1 promoter region, leading to a decrease in PAT1 expression and subsequently an inhibition of NOX2 activation (Figure 4G). Therefore, these results may shed fresh light into the antioxidative and anti-inflammatory mechanisms of VD, providing the evidence for its neuroprotective actions in the inflammation-related brain dysfunctions. The study was supported by the National Natural Science Foundation of China (81602846; 82272253; 81901954), Natural Science Foundation of Shandong Province (ZR2021MH145), Taishan Scholar Project of Shandong Province (tsqn201812159), China International Medical Foundation (Z-2018-35-2002) and Research Fund for Lin He’s Academician Workstation of New Medicine and Clinical Translation (JYHL2021FMS19). The authors declare no conflicts of interest. The datasets used and analysed during the present study are available from the corresponding author on reasonable request. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tnt22278完成签到,获得积分10
2秒前
ss完成签到,获得积分20
7秒前
sims完成签到,获得积分10
8秒前
basket完成签到 ,获得积分10
8秒前
LeoYiS214完成签到,获得积分10
9秒前
阳光傲菡完成签到 ,获得积分10
11秒前
12秒前
夜盏丿完成签到,获得积分10
17秒前
min17应助tnt22278采纳,获得10
20秒前
执意完成签到 ,获得积分10
22秒前
WSY完成签到 ,获得积分10
23秒前
吕小布完成签到,获得积分10
25秒前
啥时候能早睡完成签到 ,获得积分10
30秒前
WindDreamer完成签到,获得积分10
33秒前
JHGG应助科研通管家采纳,获得10
36秒前
JHGG应助科研通管家采纳,获得10
36秒前
汉堡包应助科研通管家采纳,获得10
37秒前
Jasper应助科研通管家采纳,获得10
37秒前
yuzhi完成签到 ,获得积分10
37秒前
37秒前
SH完成签到,获得积分10
37秒前
喜悦的飞飞完成签到,获得积分10
38秒前
一二完成签到,获得积分10
38秒前
沉静从凝完成签到 ,获得积分10
41秒前
43秒前
DD立芬完成签到 ,获得积分10
50秒前
学术菜鸡123完成签到,获得积分10
56秒前
胡杨完成签到,获得积分10
56秒前
56秒前
Solar energy发布了新的文献求助10
59秒前
llbeyond完成签到,获得积分0
1分钟前
三千世界完成签到,获得积分10
1分钟前
宛宛完成签到,获得积分10
1分钟前
Solar energy完成签到,获得积分10
1分钟前
DY完成签到,获得积分10
1分钟前
童童完成签到,获得积分10
1分钟前
哈哈哈哈完成签到 ,获得积分10
1分钟前
诚心的电话完成签到 ,获得积分10
1分钟前
研友_Lmbz1n完成签到 ,获得积分10
1分钟前
xy完成签到 ,获得积分10
1分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 回忆录 2000
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Die Elektra-Partitur von Richard Strauss : ein Lehrbuch für die Technik der dramatischen Komposition 1000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
LNG地下タンク躯体の構造性能照査指針 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3001368
求助须知:如何正确求助?哪些是违规求助? 2661212
关于积分的说明 7207892
捐赠科研通 2297123
什么是DOI,文献DOI怎么找? 1218189
科研通“疑难数据库(出版商)”最低求助积分说明 593993
版权声明 592955