Percussion-based loosening detection method for multi-bolt structure using convolutional neural network DenseNet-CBAM

信号(编程语言) 预处理器 计算机科学 干扰(通信) 人工智能 模式识别(心理学) 计算机网络 频道(广播) 程序设计语言
作者
Chenfei Du,Jianhua Liu,Hao Gong,Jiayu Huang,Wentao Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (4): 2183-2199 被引量:2
标识
DOI:10.1177/14759217231182305
摘要

Threaded fasteners are widely applied in mechanical systems, providing the functions of connection, fastening, and sealing. However, loosening is vulnerable to occurring in harsh environment. The importance of loosening detection cannot be emphasized. Percussion-based loosening detection method has attracted much attention due to the convenience and low cost. However, the simultaneous loosening detection of multiple-threaded fasteners based on percussion method is still a challenging issue that needs to be addressed. This study proposes a novel multi-bolt loosening detection method combining percussion method, and deep learning. The method consists of three integrated modules, that is, signal preprocessing, loosening information enhancement, and loosening detection modules. In the first module, variational mode decomposition is used to decompose the original signal into a series of intrinsic mode function to eliminate the interference of noise. In the second module, compressive sampling matching pursuit is applied to represent the denoised signal sparsely, and the sparse signal is fused with the denoised signal to enhance loosening information in the signal. Last, DenseNet-CBAM network structure combining attention mechanism is proposed for multiple classification task. Experimental results showed that the proposed method achieved the detection accuracy of more than 97% in three different types of mechanical structures with multiple-threaded fasteners, indicating its great potentials in engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Shaka采纳,获得10
刚刚
天天开心完成签到 ,获得积分10
刚刚
刚刚
yhy发布了新的文献求助10
1秒前
所所应助万坤采纳,获得30
1秒前
1秒前
2秒前
2秒前
充电宝应助Qwe采纳,获得10
2秒前
binglangcha发布了新的文献求助10
2秒前
阿波完成签到,获得积分10
3秒前
3秒前
FashionBoy应助林少玮采纳,获得10
4秒前
111完成签到,获得积分10
4秒前
温馨发布了新的文献求助20
4秒前
Seventeen发布了新的文献求助10
5秒前
5秒前
酸汤肥牛完成签到,获得积分10
5秒前
Q-发布了新的文献求助20
6秒前
6秒前
7秒前
萍水相逢发布了新的文献求助10
7秒前
善良天抒发布了新的文献求助10
8秒前
SYLH应助zzw54188采纳,获得10
8秒前
8秒前
棋士发布了新的文献求助10
8秒前
英姑应助坚强归尘采纳,获得10
8秒前
9秒前
10秒前
10秒前
10秒前
向雨竹发布了新的文献求助10
11秒前
稚祎发布了新的文献求助10
11秒前
吴海彤完成签到,获得积分10
11秒前
12秒前
Kikua发布了新的文献求助30
12秒前
体贴的谷丝完成签到,获得积分10
12秒前
12秒前
地精术士完成签到,获得积分10
12秒前
Owen应助科研通管家采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993