Percussion-based loosening detection method for multi-bolt structure using convolutional neural network DenseNet-CBAM

信号(编程语言) 预处理器 计算机科学 干扰(通信) 人工智能 模式识别(心理学) 计算机网络 频道(广播) 程序设计语言
作者
Chenfei Du,Jianhua Liu,Hao Gong,Jiayu Huang,Wentao Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (4): 2183-2199 被引量:6
标识
DOI:10.1177/14759217231182305
摘要

Threaded fasteners are widely applied in mechanical systems, providing the functions of connection, fastening, and sealing. However, loosening is vulnerable to occurring in harsh environment. The importance of loosening detection cannot be emphasized. Percussion-based loosening detection method has attracted much attention due to the convenience and low cost. However, the simultaneous loosening detection of multiple-threaded fasteners based on percussion method is still a challenging issue that needs to be addressed. This study proposes a novel multi-bolt loosening detection method combining percussion method, and deep learning. The method consists of three integrated modules, that is, signal preprocessing, loosening information enhancement, and loosening detection modules. In the first module, variational mode decomposition is used to decompose the original signal into a series of intrinsic mode function to eliminate the interference of noise. In the second module, compressive sampling matching pursuit is applied to represent the denoised signal sparsely, and the sparse signal is fused with the denoised signal to enhance loosening information in the signal. Last, DenseNet-CBAM network structure combining attention mechanism is proposed for multiple classification task. Experimental results showed that the proposed method achieved the detection accuracy of more than 97% in three different types of mechanical structures with multiple-threaded fasteners, indicating its great potentials in engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
531完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
xixi完成签到,获得积分10
5秒前
5秒前
发发发完成签到 ,获得积分10
5秒前
帅帅子完成签到,获得积分10
5秒前
5秒前
6秒前
江小白发布了新的文献求助10
6秒前
7秒前
机械师简发布了新的文献求助20
7秒前
8秒前
危机的河马完成签到,获得积分10
8秒前
8秒前
王哈哈完成签到,获得积分20
8秒前
NGU发布了新的文献求助10
9秒前
仁爱雪晴发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
13秒前
杭心灵完成签到,获得积分10
13秒前
ljb完成签到,获得积分10
13秒前
13秒前
CZ88完成签到 ,获得积分10
14秒前
HANGOVERG完成签到,获得积分10
14秒前
orange9发布了新的文献求助10
15秒前
法不拉底发布了新的文献求助10
15秒前
15秒前
大模型应助zhangsy采纳,获得10
15秒前
科研通AI2S应助jkhjkhj采纳,获得10
17秒前
充电宝应助吴雩采纳,获得20
17秒前
Tim发布了新的文献求助10
17秒前
江小白完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297298
求助须知:如何正确求助?哪些是违规求助? 4446207
关于积分的说明 13838799
捐赠科研通 4331371
什么是DOI,文献DOI怎么找? 2377578
邀请新用户注册赠送积分活动 1372834
关于科研通互助平台的介绍 1338403