遥感
计算机科学
卫星
分割
特征(语言学)
环境科学
地理
人工智能
工程类
语言学
哲学
航空航天工程
作者
Jianjun Huang,Jindong Xu,Qianpeng Chong,Ziyi Li
标识
DOI:10.1080/07038992.2023.2237591
摘要
Black and odorous water seriously affects the ecological balance of rivers and the health of people living nearby. Satellite remote sensing technology with its advantages of a large range, long-time series, low cost, and high efficiency, has provided a new area for water quality detection. Much archived remote sensing satellite data can be further processed and used as a data source for black and odorous water detection. In this paper, Gaofen-2 remote sensing data with a spatial resolution of 1 m is leveraged as the data source. To enrich the data source in the northern coastal zone of China, we have built a high-quality remote sensing dataset, called the remote sensing images for black and odorous water detection (RSBD) dataset, which is collected from the Gaofen-2 satellite in Yantai, China. In addition, we propose a network with an encoder-decoder discriminant structure for black and odorous water detection. In the network, an augmented attention module is designed to capture a more comprehensive semantic feature representation. Further, the median balancing loss function is adopted to solve the imbalance issues. Experimental results demonstrate that the network is superior to other state-of-the-art semantic segmentation methods on our dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI