Black and Odorous Water Detection of Remote Sensing Images Based on Improved Deep Learning

遥感 计算机科学 卫星 分割 特征(语言学) 环境科学 地理 人工智能 工程类 语言学 哲学 航空航天工程
作者
Jianjun Huang,Jindong Xu,Qianpeng Chong,Ziyi Li
出处
期刊:Canadian Journal of Remote Sensing [Informa]
卷期号:49 (1) 被引量:3
标识
DOI:10.1080/07038992.2023.2237591
摘要

Black and odorous water seriously affects the ecological balance of rivers and the health of people living nearby. Satellite remote sensing technology with its advantages of a large range, long-time series, low cost, and high efficiency, has provided a new area for water quality detection. Much archived remote sensing satellite data can be further processed and used as a data source for black and odorous water detection. In this paper, Gaofen-2 remote sensing data with a spatial resolution of 1 m is leveraged as the data source. To enrich the data source in the northern coastal zone of China, we have built a high-quality remote sensing dataset, called the remote sensing images for black and odorous water detection (RSBD) dataset, which is collected from the Gaofen-2 satellite in Yantai, China. In addition, we propose a network with an encoder-decoder discriminant structure for black and odorous water detection. In the network, an augmented attention module is designed to capture a more comprehensive semantic feature representation. Further, the median balancing loss function is adopted to solve the imbalance issues. Experimental results demonstrate that the network is superior to other state-of-the-art semantic segmentation methods on our dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传统的凝天完成签到,获得积分10
2秒前
yg完成签到,获得积分10
3秒前
1111发布了新的文献求助10
3秒前
张琦发布了新的文献求助10
4秒前
打打应助wangxinyao采纳,获得10
4秒前
5秒前
5秒前
酷波er应助一区种子选手采纳,获得10
5秒前
5秒前
燕十三完成签到,获得积分10
5秒前
jin_0124应助赵油油采纳,获得10
5秒前
AA完成签到 ,获得积分10
6秒前
6秒前
Halo完成签到,获得积分10
7秒前
不配.应助ZWZ采纳,获得20
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
Cassie应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得30
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
思源应助奇妙的皮皮皮采纳,获得10
9秒前
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
打打应助lupeichun采纳,获得10
11秒前
海子发布了新的文献求助10
11秒前
11秒前
栗子鱼发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663