Simultaneous Scheduling of Processing Machines and Automated Guided Vehicles via a Multi-View Modeling-Based Hybrid Algorithm

作业车间调度 自动引导车 调度(生产过程) 蚁群优化算法 计算机科学 柔性制造系统 分布估计算法 蚁群 工作车间 数学优化 流水车间调度 算法 布线(电子设计自动化) 人工智能 嵌入式系统 数学
作者
Bin Xin,Sai Lu,Qing Wang,Fang Deng,Xiang Shi,Jun Cheng,Yuhang Kang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4753-4767 被引量:2
标识
DOI:10.1109/tase.2023.3301656
摘要

The flexible job-shop co-scheduling problem (FJCSP) for processing machines and automated guided vehicles (AGVs) in a flexible manufacturing system (FMS) has attracted more attention with the aim of improving production efficiency. In FMS, AGVs in charge of transporting jobs realize the flexible linkage of operations between different processing machines. The added interdependence between transporting and processing tasks brings more difficulties than the traditional flexible job-shop scheduling problem (FJSP). In this paper, the mathematical model of FJCSP is formulated to minimize the makespan. Considering the feature similarity of FJCSP with FJSP and AGV-routing problem in different cases, a multi-view modeling-based hybrid algorithm consisting of an estimation of distribution algorithm (EDA) and an ant colony optimization (ACO) is proposed. In EDA, a probability model abstracts the information in superior solutions about the operation sequencing and the rule selection for scheduling machines and AGVs. In ACO, a job-path pheromone model and an AGV-path pheromone model are designed to jointly select the job-machine-AGV combination with shorter processing time and transportation time. In the proposed hybrid algorithm, EDA and ACO generate solutions independently and achieve cooperation by sharing elites. An adaptive parameter is designed to regulate the use of the two methods to adapt to the varying demands of multi-view modeling in different cases and search stages. Furthermore, a local search with a three-layer operator based on the critical path method is proposed to balance exploration and exploitation in solution space. Finally, computational experiments involving a case study verified the advantage of the multi-view modeling-based hybrid algorithm in comparison with the state-of-the-art approaches. Note to Practitioners —This paper was motivated by the optimization problem of scheduling machines and automated guided vehicles (AGVs) in flexible manufacturing system (FMS). In FMS with AGVs, the transportation stages for jobs by AGVs significantly impact the overall production efficiency of the FMS and cannot be overlooked. This paper suggested a hybrid evolutionary algorithm using an estimation of distribution algorithm (EDA), an ant colony optimization (ACO) and a local search algorithm based on the critical path method. In the proposed hybrid algorithm, an adaptive parameter is introduced to regulate the utilization of EDA and ACO in generating a new population. This paper presents a mathematical characterization of the scheduling problem and subsequently outlines the step-by-step design of the hybrid algorithm. Computational experiments, including a case study, demonstrate that the hybrid algorithm exhibits adaptability to various instances and outperforms state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汎影发布了新的文献求助10
刚刚
刚刚
ured发布了新的文献求助10
2秒前
贪玩的可乐完成签到 ,获得积分10
2秒前
3秒前
4秒前
lumcy完成签到,获得积分20
5秒前
Hello应助汎影采纳,获得10
6秒前
小居完成签到,获得积分10
6秒前
6秒前
洁面乳发布了新的文献求助10
7秒前
一颗小番茄完成签到,获得积分10
8秒前
深情安青应助ured采纳,获得10
8秒前
8812077发布了新的文献求助10
9秒前
充电宝应助dongmei采纳,获得10
11秒前
JHS完成签到,获得积分10
11秒前
11秒前
13秒前
稳重龙猫发布了新的文献求助10
15秒前
隐形曼青应助lemkier采纳,获得10
16秒前
18秒前
ccc发布了新的文献求助10
19秒前
阿布与小佛完成签到 ,获得积分10
20秒前
20秒前
heben发布了新的文献求助10
20秒前
小米完成签到 ,获得积分10
20秒前
妡忆完成签到,获得积分20
20秒前
ODD完成签到 ,获得积分10
22秒前
wyy完成签到,获得积分10
22秒前
22秒前
可乐完成签到,获得积分10
24秒前
李爱国应助汎影采纳,获得10
25秒前
耍酷的母鸡完成签到 ,获得积分10
25秒前
dongmei发布了新的文献求助10
25秒前
SciGPT应助。。@采纳,获得10
27秒前
可乐发布了新的文献求助10
27秒前
脑洞疼应助机智的瑾瑜采纳,获得10
31秒前
彭于晏应助兔子采纳,获得10
32秒前
美丽电源完成签到,获得积分10
32秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323