Enhanced DNA Entropy-Driven Circuit by Locked Nucleic Acids and Simulation-Guided Localization

DNA 核酸 材料科学 熵(时间箭头) 生物系统 纳米技术 生物物理学 化学物理 遗传学 生物 热力学 物理
作者
Qiaoni Kou,Jiarui Yang,Lei Wang,Hongyang Zhao,Linghao Zhang,Xin Su
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (40): 47415-47424 被引量:11
标识
DOI:10.1021/acsami.3c11189
摘要

Signal amplification methods based on DNA molecular interactions are promising tools for detecting various biomarkers in low abundance. The entropy-driven circuit (EDC), as an enzyme-free signal amplification method, has been used in detecting and imaging a variety of biomarkers. The localization strategy can effectively increase the local concentration of the DNA reaction modules to improve the signal amplification effect. However, the localization strategy may also amplify the leak reaction of the EDC, and effective signal amplification can be limited by the unclear structure-function relationship. Herein, we utilized locked nucleic acid (LNA) modification to enhance the stability of the localized entropy-driven circuit (LEDC), which suppressed a 94.6% leak signal. The coarse-grained model molecular simulation was used to guide the structure design of the LEDC, and the influence of critical factors such as the localized distance and spacer length was analyzed at the molecular level to obtain the best reaction performance. The sensitivities of miR-21 and miR-141 detected by a simulation-guided optimal LEDC probe were 17.45 and 65 pM, 1345 and 521 times higher than free-EDC, respectively. The LEDC was further employed for the fluorescence imaging of miRNA in cancer cells, showing excellent specificity and sensitivity. This work utilizes LNA and molecular simulations to comprehensively improve the performance of a localized DNA signal amplification circuit, providing an advanced DNA probe design strategy for biosensing and imaging as well as valuable information for the designers of DNA-based probes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Baron采纳,获得10
2秒前
左岸完成签到,获得积分10
2秒前
cong完成签到,获得积分10
2秒前
不低头完成签到,获得积分10
2秒前
2秒前
phil完成签到,获得积分10
3秒前
camellia完成签到 ,获得积分10
3秒前
samuel完成签到,获得积分10
3秒前
在水一方应助梧桐雨210采纳,获得10
3秒前
helinahs发布了新的文献求助10
3秒前
4秒前
4秒前
umi发布了新的文献求助10
4秒前
Zone发布了新的文献求助10
5秒前
SciGPT应助菠萝蜜采纳,获得10
5秒前
5秒前
陈曦读研版完成签到 ,获得积分10
6秒前
斯文凝蕊完成签到,获得积分10
6秒前
Linzi完成签到,获得积分10
6秒前
psycho发布了新的文献求助10
7秒前
陈大大完成签到,获得积分10
7秒前
浮游应助刘明采纳,获得10
7秒前
张兴博完成签到,获得积分10
8秒前
潇洒的如松完成签到,获得积分10
8秒前
YangSY完成签到,获得积分10
9秒前
孟一完成签到,获得积分10
9秒前
9秒前
wmf完成签到 ,获得积分10
9秒前
顺利豆芽发布了新的文献求助30
9秒前
joyce930728完成签到 ,获得积分10
10秒前
2633148059完成签到,获得积分10
10秒前
HuLL完成签到 ,获得积分10
10秒前
loveananya完成签到,获得积分10
10秒前
11秒前
夜夜完成签到,获得积分10
11秒前
CipherSage应助笨笨采纳,获得10
11秒前
Hong_Bin完成签到,获得积分10
11秒前
ty完成签到 ,获得积分10
12秒前
Baron完成签到,获得积分10
12秒前
落后十八完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5162882
求助须知:如何正确求助?哪些是违规求助? 4355956
关于积分的说明 13560837
捐赠科研通 4200975
什么是DOI,文献DOI怎么找? 2304090
邀请新用户注册赠送积分活动 1304063
关于科研通互助平台的介绍 1250390