Cataract detection and visualization based on multi-scale deep features by RINet tuned with cyclic learning rate hyperparameter

超参数 计算机科学 人工智能 眼底(子宫) 卷积神经网络 模式识别(心理学) 可视化 深度学习 特征(语言学) 特征提取 眼科 医学 语言学 哲学
作者
Prabha Kumari,Priyank Saxena
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105452-105452
标识
DOI:10.1016/j.bspc.2023.105452
摘要

The most common reason worldwide for blindness is cataract, the clouding of the lens where vision becomes increasingly blurry. Early detection of cataract is crucial for a better prognosis. This can be achieved with improved automated cataract detection and localization of the affected regions in the fundus images. This work proposes a supervised miniature U-Net (SMi-UNet) for feature extraction integrated with a convolutional neural network (RINet) explicitly designed for fundus images. The dataset used has been self-curated by collecting cataract images from multiple repositories. The proposed SMi-UNet allows a deeper network with significantly reduced parameters than conventional U-Net. The proposed RINet utilizes the features extracted by SMi-UNet for discriminating between a cataract and a normal fundus image. Further, the performance of the RINet is optimized using a cyclic learning rate (CLR) hyperparameter. CLR eliminates the need to find the best value of the learning rate and improves accuracy in a minimum number of epochs, making it suitable for edge devices. Further, to localize the prominent regions in the cataract images, colored heatmap techniques are applied at the last convolutional layer. These maps help visualize the affected areas with a hotter color. The exceptional performance of the proposed technique in cataract detection and its localization has been established by quantitative and qualitative data, demonstrating that it can be a valuable tool for early cataract detection. The obtained results were validated by an expert. The proposed RINet attains a classification accuracy of 96% and 93% with and without CLR respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
法一完成签到 ,获得积分10
刚刚
充电宝应助ysl采纳,获得30
1秒前
1秒前
诸葛语蝶完成签到,获得积分10
1秒前
通~发布了新的文献求助10
1秒前
xpp完成签到 ,获得积分10
2秒前
dyh6802发布了新的文献求助10
2秒前
2秒前
3秒前
短腿小柯基完成签到,获得积分10
3秒前
完美世界应助研一小刘采纳,获得10
3秒前
3秒前
水萝卜完成签到 ,获得积分10
4秒前
4秒前
高高完成签到,获得积分10
5秒前
甜甜晓露发布了新的文献求助10
5秒前
ChiDaiOLD发布了新的文献求助10
6秒前
7秒前
szl完成签到,获得积分10
7秒前
8秒前
orixero应助跳跃的静曼采纳,获得10
8秒前
诺奖离我十万八千里完成签到,获得积分10
8秒前
高高发布了新的文献求助10
8秒前
12秒前
深情安青应助机智的青槐采纳,获得10
12秒前
茶茶发布了新的文献求助10
12秒前
szl发布了新的文献求助10
12秒前
Lucas应助京阿尼采纳,获得10
13秒前
甜甜晓露完成签到,获得积分10
14秒前
科研通AI5应助qifa采纳,获得10
14秒前
shrike完成签到 ,获得积分10
14秒前
有魅力白开水完成签到,获得积分20
14秒前
小蒲完成签到 ,获得积分10
15秒前
万能图书馆应助大力鱼采纳,获得10
15秒前
16秒前
Rrr发布了新的文献求助10
17秒前
跳跃的静曼完成签到,获得积分10
17秒前
丰富的不惜完成签到,获得积分10
18秒前
19秒前
wfc完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808