Cataract detection and visualization based on multi-scale deep features by RINet tuned with cyclic learning rate hyperparameter

超参数 计算机科学 人工智能 眼底(子宫) 卷积神经网络 模式识别(心理学) 可视化 深度学习 特征(语言学) 特征提取 眼科 医学 语言学 哲学
作者
Pammi Kumari,Priyank Saxena
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105452-105452 被引量:4
标识
DOI:10.1016/j.bspc.2023.105452
摘要

The most common reason worldwide for blindness is cataract, the clouding of the lens where vision becomes increasingly blurry. Early detection of cataract is crucial for a better prognosis. This can be achieved with improved automated cataract detection and localization of the affected regions in the fundus images. This work proposes a supervised miniature U-Net (SMi-UNet) for feature extraction integrated with a convolutional neural network (RINet) explicitly designed for fundus images. The dataset used has been self-curated by collecting cataract images from multiple repositories. The proposed SMi-UNet allows a deeper network with significantly reduced parameters than conventional U-Net. The proposed RINet utilizes the features extracted by SMi-UNet for discriminating between a cataract and a normal fundus image. Further, the performance of the RINet is optimized using a cyclic learning rate (CLR) hyperparameter. CLR eliminates the need to find the best value of the learning rate and improves accuracy in a minimum number of epochs, making it suitable for edge devices. Further, to localize the prominent regions in the cataract images, colored heatmap techniques are applied at the last convolutional layer. These maps help visualize the affected areas with a hotter color. The exceptional performance of the proposed technique in cataract detection and its localization has been established by quantitative and qualitative data, demonstrating that it can be a valuable tool for early cataract detection. The obtained results were validated by an expert. The proposed RINet attains a classification accuracy of 96% and 93% with and without CLR respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小米完成签到,获得积分20
刚刚
zwc发布了新的文献求助10
刚刚
wuyun9653发布了新的文献求助10
刚刚
刚刚
1秒前
丁鹏笑完成签到 ,获得积分0
2秒前
wQ1ng应助维洛尼亚采纳,获得10
2秒前
111完成签到,获得积分20
2秒前
3秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
严逍遥应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得30
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
严逍遥应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
8秒前
ceeray23应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
8秒前
然大宝发布了新的文献求助10
8秒前
佳儿完成签到,获得积分10
9秒前
10秒前
Fingerprints完成签到 ,获得积分10
10秒前
11秒前
曹亚伟发布了新的文献求助10
11秒前
11秒前
YAO发布了新的文献求助10
14秒前
chen发布了新的文献求助10
14秒前
bkagyin应助杰bro采纳,获得10
14秒前
1218完成签到 ,获得积分10
17秒前
CC发布了新的文献求助10
17秒前
hongxuezhi完成签到,获得积分10
18秒前
18秒前
wQ1ng应助777采纳,获得10
20秒前
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208961
求助须知:如何正确求助?哪些是违规求助? 4386288
关于积分的说明 13660545
捐赠科研通 4245343
什么是DOI,文献DOI怎么找? 2329238
邀请新用户注册赠送积分活动 1327077
关于科研通互助平台的介绍 1279355