清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Cataract detection and visualization based on multi-scale deep features by RINet tuned with cyclic learning rate hyperparameter

超参数 计算机科学 人工智能 眼底(子宫) 卷积神经网络 模式识别(心理学) 可视化 深度学习 特征(语言学) 特征提取 眼科 医学 语言学 哲学
作者
Prabha Kumari,Priyank Saxena
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105452-105452
标识
DOI:10.1016/j.bspc.2023.105452
摘要

The most common reason worldwide for blindness is cataract, the clouding of the lens where vision becomes increasingly blurry. Early detection of cataract is crucial for a better prognosis. This can be achieved with improved automated cataract detection and localization of the affected regions in the fundus images. This work proposes a supervised miniature U-Net (SMi-UNet) for feature extraction integrated with a convolutional neural network (RINet) explicitly designed for fundus images. The dataset used has been self-curated by collecting cataract images from multiple repositories. The proposed SMi-UNet allows a deeper network with significantly reduced parameters than conventional U-Net. The proposed RINet utilizes the features extracted by SMi-UNet for discriminating between a cataract and a normal fundus image. Further, the performance of the RINet is optimized using a cyclic learning rate (CLR) hyperparameter. CLR eliminates the need to find the best value of the learning rate and improves accuracy in a minimum number of epochs, making it suitable for edge devices. Further, to localize the prominent regions in the cataract images, colored heatmap techniques are applied at the last convolutional layer. These maps help visualize the affected areas with a hotter color. The exceptional performance of the proposed technique in cataract detection and its localization has been established by quantitative and qualitative data, demonstrating that it can be a valuable tool for early cataract detection. The obtained results were validated by an expert. The proposed RINet attains a classification accuracy of 96% and 93% with and without CLR respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叼面包的数学狗完成签到 ,获得积分10
1秒前
oxear完成签到,获得积分10
4秒前
小郭完成签到,获得积分10
5秒前
快乐的芷巧完成签到,获得积分10
5秒前
xfy完成签到,获得积分10
5秒前
张振宇完成签到 ,获得积分10
7秒前
Balance Man完成签到 ,获得积分10
7秒前
tmobiusx完成签到,获得积分10
24秒前
LELE完成签到 ,获得积分10
28秒前
31秒前
安琪琪完成签到 ,获得积分10
43秒前
忧伤的慕梅完成签到 ,获得积分10
45秒前
HY完成签到 ,获得积分10
48秒前
sprouthui完成签到 ,获得积分10
54秒前
华仔应助唠叨的若男采纳,获得10
59秒前
1分钟前
1分钟前
xhx完成签到,获得积分20
1分钟前
Eric800824完成签到 ,获得积分10
1分钟前
芒果布丁完成签到 ,获得积分10
1分钟前
醉熏的千柳完成签到 ,获得积分10
1分钟前
浪麻麻完成签到 ,获得积分10
1分钟前
浪麻麻完成签到 ,获得积分10
1分钟前
奥利奥利奥完成签到 ,获得积分10
1分钟前
追梦完成签到,获得积分10
1分钟前
潇洒的语蝶完成签到 ,获得积分10
1分钟前
Accept完成签到 ,获得积分10
2分钟前
深情安青应助唠叨的若男采纳,获得10
2分钟前
2分钟前
2分钟前
秋迎夏完成签到,获得积分10
2分钟前
不知道完成签到,获得积分10
2分钟前
蔡勇强完成签到 ,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
迈克老狼完成签到 ,获得积分10
2分钟前
高贵的晓筠完成签到 ,获得积分10
2分钟前
2分钟前
jibenkun完成签到,获得积分10
2分钟前
tangchao完成签到,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495278
关于积分的说明 11076054
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783291
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839