A hierarchical classifying and two-step training strategy for detection and diagnosis of anormal temperature in district heating system

计算机科学 支持向量机 人工智能 培训(气象学) 任务(项目管理) 模式识别(心理学) 工程类 气象学 物理 系统工程
作者
Chunhua Sun,Haixiang Zhang,Shanshan Cao,Guoqiang Xia,Jian Zhong,WU Xiang-dong
出处
期刊:Applied Energy [Elsevier]
卷期号:349: 121731-121731 被引量:2
标识
DOI:10.1016/j.apenergy.2023.121731
摘要

Anormal temperature data caused by various reasons such as sensor faults and operation faults, which has a negative influence on heat metering and operation regulation in district heating system (DHS). However, it is difficult to detect and diagnose anormal temperature among massive unlabeled operation data. Therefore, this paper proposes a novel hierarchical classifying and two-step training strategy to facilitate the anormal temperature detection and diagnosis task. Firstly, self-defined feature change rate of operation data like water temperature, flow rate, and valve opening are constructed as additional training features to capture the characteristics of anormal temperature conditions. Then, a hierarchical classifying method is proposed to detect anormal temperature data. Finally, a two-step training strategy which combines expert knowledge with support vector machine (SVM) to fulfill anormal temperature type diagnosis. The proposed strategy is applied to a typical DHS in cold region of China. A total of 10,920 anormal data are detected. Four anormal temperature conditions are diagnosed including offline sensor, inversely connected sensor, anormal operation of heat source, and shutdown of heat station. The diagnosis accuracy for the 4 kinds of anormal temperature conditions all reached over 98%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zy关闭了zy文献求助
1秒前
1秒前
1秒前
顺利秋灵发布了新的文献求助10
1秒前
可爱的函函应助kylin采纳,获得10
1秒前
兴奋白枫发布了新的文献求助10
2秒前
2秒前
2秒前
tuanheqi应助guozizi采纳,获得50
4秒前
超级灰狼发布了新的文献求助10
4秒前
4秒前
NPC-CBI发布了新的文献求助10
4秒前
slsyia完成签到,获得积分10
5秒前
yoona发布了新的文献求助10
6秒前
loulan发布了新的文献求助10
6秒前
斯文败类应助zzz采纳,获得10
7秒前
华仔应助顺利秋灵采纳,获得10
7秒前
11发布了新的文献求助10
7秒前
7秒前
ah完成签到,获得积分10
7秒前
零零零零发布了新的文献求助10
8秒前
Wcy发布了新的文献求助10
8秒前
毛豆应助nczpf2010采纳,获得10
9秒前
9秒前
9秒前
9秒前
晚灯发布了新的文献求助10
10秒前
上官若男应助无情的怜晴采纳,获得10
11秒前
大神完成签到,获得积分20
13秒前
宣宣宣0733发布了新的文献求助10
13秒前
Charlie完成签到 ,获得积分10
14秒前
辛勤的zack发布了新的文献求助10
14秒前
汉堡包应助晚灯采纳,获得10
15秒前
吹梦成真完成签到,获得积分10
15秒前
丘比特应助科研垃圾采纳,获得10
16秒前
17秒前
18秒前
深情安青应助临水思长采纳,获得10
18秒前
冲冲冲发布了新的文献求助10
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483773
求助须知:如何正确求助?哪些是违规求助? 3073002
关于积分的说明 9128881
捐赠科研通 2764596
什么是DOI,文献DOI怎么找? 1517290
邀请新用户注册赠送积分活动 701998
科研通“疑难数据库(出版商)”最低求助积分说明 700849