Fusion of memristor and digital compute-in-memory processing for energy-efficient edge computing

记忆电阻器 GSM演进的增强数据速率 计算机科学 边缘计算 能量(信号处理) 计算科学 人工智能 电子工程 物理 工程类 量子力学
作者
Tai-Hao Wen,Je-Min Hung,Wei-Hsing Huang,Chuan-Jia Jhang,Yun-Chen Lo,Hung-Hsi Hsu,Zhao-En Ke,Yu-Chiao Chen,Yu-Hsiang Chin,Chin-I Su,Win-San Khwa,Chung-Chuan Lo,Ren-Shuo Liu,Chih-Cheng Hsieh,Kea‐Tiong Tang,Mon‐Shu Ho,Chung-Cheng Chou,Yu-Der Chih,Tsung-Yung Jonathan Chang,Meng‐Fan Chang
出处
期刊:Science [American Association for the Advancement of Science]
卷期号:384 (6693): 325-332 被引量:6
标识
DOI:10.1126/science.adf5538
摘要

Artificial intelligence (AI) edge devices prefer employing high-capacity nonvolatile compute-in-memory (CIM) to achieve high energy efficiency and rapid wakeup-to-response with sufficient accuracy. Most previous works are based on either memristor-based CIMs, which suffer from accuracy loss and do not support training as a result of limited endurance, or digital static random-access memory (SRAM)-based CIMs, which suffer from large area requirements and volatile storage. We report an AI edge processor that uses a memristor-SRAM CIM-fusion scheme to simultaneously exploit the high accuracy of the digital SRAM CIM and the high energy-efficiency and storage density of the resistive random-access memory memristor CIM. This also enables adaptive local training to accommodate personalized characterization and user environment. The fusion processor achieved high CIM capacity, short wakeup-to-response latency (392 microseconds), high peak energy efficiency (77.64 teraoperations per second per watt), and robust accuracy (<0.5% accuracy loss). This work demonstrates that memristor technology has moved beyond in-lab development stages and now has manufacturability for AI edge processors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得40
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
劲秉应助科研通管家采纳,获得10
1秒前
AAA应助科研通管家采纳,获得10
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
sxs完成签到 ,获得积分10
3秒前
3秒前
Shantx完成签到,获得积分10
4秒前
4秒前
wanli445发布了新的文献求助10
5秒前
6秒前
琦酱完成签到,获得积分10
6秒前
冷冷发布了新的文献求助10
6秒前
7秒前
hxl发布了新的文献求助10
8秒前
冲啊皮卡丘完成签到,获得积分10
8秒前
赘婿应助六角采纳,获得10
9秒前
10秒前
11秒前
Shirley@yiyi发布了新的文献求助30
11秒前
冷冷完成签到,获得积分10
12秒前
tao发布了新的文献求助10
13秒前
Jasper应助忐忑的大白采纳,获得10
13秒前
ZM发布了新的文献求助10
14秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670705
求助须知:如何正确求助?哪些是违规求助? 3227648
关于积分的说明 9776557
捐赠科研通 2937823
什么是DOI,文献DOI怎么找? 1609637
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735874