Quantitative Evaluation of Large Language Models to Streamline Radiology Report Impressions: A Multimodal Retrospective Analysis

医学 可读性 放射科 医学物理学 背景(考古学) 阅读(过程) 语言学 计算机科学 生物 哲学 古生物学 程序设计语言
作者
Rushabh Doshi,Kanhai Amin,P.K. Khosla,Simar S. Bajaj,Sophie Chheang,Howard P. Forman
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (3) 被引量:14
标识
DOI:10.1148/radiol.231593
摘要

Background The complex medical terminology of radiology reports may cause confusion or anxiety for patients, especially given increased access to electronic health records. Large language models (LLMs) can potentially simplify radiology report readability. Purpose To compare the performance of four publicly available LLMs (ChatGPT-3.5 and ChatGPT-4, Bard [now known as Gemini], and Bing) in producing simplified radiology report impressions. Materials and Methods In this retrospective comparative analysis of the four LLMs (accessed July 23 to July 26, 2023), the Medical Information Mart for Intensive Care (MIMIC)-IV database was used to gather 750 anonymized radiology report impressions covering a range of imaging modalities (MRI, CT, US, radiography, mammography) and anatomic regions. Three distinct prompts were employed to assess the LLMs' ability to simplify report impressions. The first prompt (prompt 1) was "Simplify this radiology report." The second prompt (prompt 2) was "I am a patient. Simplify this radiology report." The last prompt (prompt 3) was "Simplify this radiology report at the 7th grade level." Each prompt was followed by the radiology report impression and was queried once. The primary outcome was simplification as assessed by readability score. Readability was assessed using the average of four established readability indexes. The nonparametric Wilcoxon signed-rank test was applied to compare reading grade levels across LLM output. Results All four LLMs simplified radiology report impressions across all prompts tested (P < .001). Within prompts, differences were found between LLMs. Providing the context of being a patient or requesting simplification at the seventh-grade level reduced the reading grade level of output for all models and prompts (except prompt 1 to prompt 2 for ChatGPT-4) (P < .001). Conclusion Although the success of each LLM varied depending on the specific prompt wording, all four models simplified radiology report impressions across all modalities and prompts tested. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Rahsepar in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiabia发布了新的文献求助10
1秒前
欢呼的海完成签到,获得积分10
1秒前
Cynthia完成签到,获得积分10
1秒前
2秒前
Hettl发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
5秒前
trial完成签到,获得积分10
6秒前
文静湘发布了新的文献求助10
6秒前
晚凝完成签到,获得积分10
6秒前
jessie发布了新的文献求助10
6秒前
7秒前
天天快乐应助沧海采纳,获得10
7秒前
7秒前
Twikky发布了新的文献求助10
7秒前
光翟君发布了新的文献求助10
7秒前
欢呼的海发布了新的文献求助10
8秒前
小一完成签到,获得积分10
8秒前
8秒前
Cina应助舒匿采纳,获得10
8秒前
天天开心完成签到,获得积分10
8秒前
共享精神应助Sera采纳,获得10
8秒前
殇春秋完成签到,获得积分10
9秒前
Lily发布了新的文献求助10
9秒前
QDF发布了新的文献求助10
10秒前
10秒前
濮阳思远发布了新的文献求助20
10秒前
11秒前
11秒前
paidahai完成签到,获得积分10
11秒前
12秒前
SciGPT应助优秀傲松采纳,获得10
12秒前
12秒前
科研通AI2S应助帅气的可乐采纳,获得10
12秒前
小于完成签到,获得积分10
12秒前
赘婿应助pqyang采纳,获得10
13秒前
13秒前
Cynthia发布了新的文献求助10
13秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119837
求助须知:如何正确求助?哪些是违规求助? 2770280
关于积分的说明 7703883
捐赠科研通 2425650
什么是DOI,文献DOI怎么找? 1288160
科研通“疑难数据库(出版商)”最低求助积分说明 620913
版权声明 599970