Performance of an Artificial Intelligence System for Breast Cancer Detection on Screening Mammograms from BreastScreen Norway

医学 接收机工作特性 乳腺癌 乳腺摄影术 人工智能 癌症 机器学习 妇科 医学物理学 内科学 计算机科学
作者
Marthe Larsen,Camilla F. Olstad,Christoph I. Lee,Tone Hovda,Solveig Roth Hoff,Marit Almenning Martiniussen,Karl Øyvind Mikalsen,Håkon Lund-Hanssen,Helene S. Solli,Marko Silberhorn,Åse Ø Sulheim,Steinar Auensen,Jan F. Nygård,Solveig Hofvind
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (3) 被引量:4
标识
DOI:10.1148/ryai.230375
摘要

Purpose To explore the stand-alone breast cancer detection performance, at different risk score thresholds, of a commercially available artificial intelligence (AI) system. Materials and Methods This retrospective study included information from 661 695 digital mammographic examinations performed among 242 629 female individuals screened as a part of BreastScreen Norway, 2004-2018. The study sample included 3807 screen-detected cancers and 1110 interval breast cancers. A continuous examination-level risk score by the AI system was used to measure performance as the area under the receiver operating characteristic curve (AUC) with 95% CIs and cancer detection at different AI risk score thresholds. Results The AUC of the AI system was 0.93 (95% CI: 0.92, 0.93) for screen-detected cancers and interval breast cancers combined and 0.97 (95% CI: 0.97, 0.97) for screen-detected cancers. In a setting where 10% of the examinations with the highest AI risk scores were defined as positive and 90% with the lowest scores as negative, 92.0% (3502 of 3807) of the screen-detected cancers and 44.6% (495 of 1110) of the interval breast cancers were identified with AI. In this scenario, 68.5% (10 987 of 16 040) of false-positive screening results (negative recall assessment) were considered negative by AI. When 50% was used as the cutoff, 99.3% (3781 of 3807) of the screen-detected cancers and 85.2% (946 of 1110) of the interval breast cancers were identified as positive by AI, whereas 17.0% (2725 of 16 040) of the false-positive results were considered negative. Conclusion The AI system showed high performance in detecting breast cancers within 2 years of screening mammography and a potential for use to triage low-risk mammograms to reduce radiologist workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助陶醉发箍采纳,获得10
2秒前
闪闪千兰发布了新的文献求助10
3秒前
5秒前
邱夫斯基发布了新的文献求助20
5秒前
华仔应助小王采纳,获得10
6秒前
xyf发布了新的文献求助20
6秒前
7秒前
舒适斑马完成签到,获得积分10
7秒前
8秒前
8秒前
畅快毒娘完成签到,获得积分20
8秒前
10秒前
10秒前
赘婿应助尊敬的芷卉采纳,获得10
11秒前
逐梦ing完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
易安发布了新的文献求助10
13秒前
舒适斑马发布了新的文献求助10
14秒前
畅快毒娘发布了新的文献求助30
14秒前
15秒前
Singularity应助薛雨佳采纳,获得10
16秒前
天天快乐应助醒醒采纳,获得10
17秒前
小王发布了新的文献求助10
18秒前
18秒前
19秒前
千寻发布了新的文献求助10
20秒前
20秒前
科研通AI5应助1222采纳,获得20
23秒前
dongguoxia发布了新的文献求助10
24秒前
小菜鸡发布了新的文献求助10
24秒前
眯眯眼的衬衫应助shine0king采纳,获得10
24秒前
香蕉觅云应助nadeem采纳,获得10
26秒前
Hello应助呆头鹅采纳,获得10
26秒前
搜集达人应助江峰采纳,获得10
26秒前
Hello应助nbnbaaa采纳,获得10
26秒前
2311发布了新的文献求助10
26秒前
星辰大海应助不吃西瓜采纳,获得10
26秒前
FashionBoy应助笑面客采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769687
求助须知:如何正确求助?哪些是违规求助? 3314764
关于积分的说明 10173625
捐赠科研通 3030095
什么是DOI,文献DOI怎么找? 1662612
邀请新用户注册赠送积分活动 795054
科研通“疑难数据库(出版商)”最低求助积分说明 756519