MDSCAN: RMSD-based HDBSCAN clustering of long molecular dynamics

计算机科学 聚类分析 理论计算机科学 人工智能
作者
Roy González‐Alemán,Daniel Platero-Rochart,Alejandro Rodríguez-Serradet,Erix W. Hernández‐Rodríguez,Julio Caballero,Fabrice Leclerc,Luís A. Montero
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (23): 5191-5198 被引量:6
标识
DOI:10.1093/bioinformatics/btac666
摘要

Abstract Motivation The term clustering designates a comprehensive family of unsupervised learning methods allowing to group similar elements into sets called clusters. Geometrical clustering of molecular dynamics (MD) trajectories is a well-established analysis to gain insights into the conformational behavior of simulated systems. However, popular variants collapse when processing relatively long trajectories because of their quadratic memory or time complexity. From the arsenal of clustering algorithms, HDBSCAN stands out as a hierarchical density-based alternative that provides robust differentiation of intimately related elements from noise data. Although a very efficient implementation of this algorithm is available for programming-skilled users (HDBSCAN*), it cannot treat long trajectories under the de facto molecular similarity metric RMSD. Results Here, we propose MDSCAN, an HDBSCAN-inspired software specifically conceived for non-programmers users to perform memory-efficient RMSD-based clustering of long MD trajectories. Methodological improvements over the original version include the encoding of trajectories as a particular class of vantage-point tree (decreasing time complexity), and a dual-heap approach to construct a quasi-minimum spanning tree (reducing memory complexity). MDSCAN was able to process a trajectory of 1 million frames using the RMSD metric in about 21 h with <8 GB of RAM, a task that would have taken a similar time but more than 32 TB of RAM with the accelerated HDBSCAN* implementation generally used. Availability and implementation The source code and documentation of MDSCAN are free and publicly available on GitHub (https://github.com/LQCT/MDScan.git) and as a PyPI package (https://pypi.org/project/mdscan/). Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天快乐应助鲤鱼冰海采纳,获得10
1秒前
qd关注了科研通微信公众号
2秒前
4秒前
Grin完成签到,获得积分10
4秒前
5秒前
5秒前
non平行线发布了新的文献求助10
5秒前
生动的芝完成签到,获得积分20
6秒前
zy_asd发布了新的文献求助10
7秒前
8秒前
xunlei完成签到,获得积分10
11秒前
完美世界应助生动的芝采纳,获得10
11秒前
处处吻完成签到 ,获得积分10
12秒前
这颗柠檬不够酸完成签到,获得积分10
12秒前
kaifeiQi完成签到,获得积分10
13秒前
13秒前
qio一眼完成签到,获得积分10
13秒前
啦啦鱼完成签到 ,获得积分10
14秒前
bai发布了新的文献求助10
15秒前
CodeCraft应助LJJ采纳,获得10
19秒前
19秒前
19秒前
non平行线完成签到,获得积分10
20秒前
惜名发布了新的文献求助10
23秒前
24秒前
生动的芝发布了新的文献求助10
24秒前
memedaaaah完成签到,获得积分10
26秒前
FashionBoy应助柔弱狗采纳,获得10
27秒前
lanshi1008发布了新的文献求助10
30秒前
华仔应助搞怪夏天采纳,获得10
31秒前
33秒前
Owen应助远方的蓝风铃采纳,获得10
34秒前
希望天下0贩的0应助惜名采纳,获得10
34秒前
34秒前
35秒前
36秒前
36秒前
完美世界应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141258
求助须知:如何正确求助?哪些是违规求助? 2792257
关于积分的说明 7801943
捐赠科研通 2448459
什么是DOI,文献DOI怎么找? 1302536
科研通“疑难数据库(出版商)”最低求助积分说明 626638
版权声明 601237