MDSCAN: RMSD-based HDBSCAN clustering of long molecular dynamics

计算机科学 聚类分析 理论计算机科学 人工智能
作者
Roy González‐Alemán,Daniel Platero-Rochart,Alejandro Rodríguez-Serradet,Erix W. Hernández‐Rodríguez,Julio Caballero,Fabrice Leclerc,Luís A. Montero
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (23): 5191-5198 被引量:6
标识
DOI:10.1093/bioinformatics/btac666
摘要

Abstract Motivation The term clustering designates a comprehensive family of unsupervised learning methods allowing to group similar elements into sets called clusters. Geometrical clustering of molecular dynamics (MD) trajectories is a well-established analysis to gain insights into the conformational behavior of simulated systems. However, popular variants collapse when processing relatively long trajectories because of their quadratic memory or time complexity. From the arsenal of clustering algorithms, HDBSCAN stands out as a hierarchical density-based alternative that provides robust differentiation of intimately related elements from noise data. Although a very efficient implementation of this algorithm is available for programming-skilled users (HDBSCAN*), it cannot treat long trajectories under the de facto molecular similarity metric RMSD. Results Here, we propose MDSCAN, an HDBSCAN-inspired software specifically conceived for non-programmers users to perform memory-efficient RMSD-based clustering of long MD trajectories. Methodological improvements over the original version include the encoding of trajectories as a particular class of vantage-point tree (decreasing time complexity), and a dual-heap approach to construct a quasi-minimum spanning tree (reducing memory complexity). MDSCAN was able to process a trajectory of 1 million frames using the RMSD metric in about 21 h with <8 GB of RAM, a task that would have taken a similar time but more than 32 TB of RAM with the accelerated HDBSCAN* implementation generally used. Availability and implementation The source code and documentation of MDSCAN are free and publicly available on GitHub (https://github.com/LQCT/MDScan.git) and as a PyPI package (https://pypi.org/project/mdscan/). Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jero完成签到 ,获得积分10
1秒前
2秒前
朝菌发布了新的文献求助10
3秒前
幸运星完成签到,获得积分10
5秒前
QiQi完成签到,获得积分10
5秒前
xuanxuan发布了新的文献求助10
6秒前
风中的黑夜完成签到,获得积分20
6秒前
scm应助唠叨的一手采纳,获得50
8秒前
试尝胆大应助畅快的文博采纳,获得10
9秒前
liuchuck完成签到 ,获得积分10
10秒前
10秒前
Amanda完成签到,获得积分10
10秒前
11秒前
cuber完成签到 ,获得积分10
12秒前
14秒前
zoro发布了新的文献求助10
14秒前
朝菌完成签到,获得积分10
14秒前
贝塔完成签到,获得积分20
15秒前
18秒前
kami发布了新的文献求助10
19秒前
24秒前
24秒前
18746005898完成签到 ,获得积分10
26秒前
深情安青应助猫和老鼠采纳,获得10
32秒前
33秒前
林红刚完成签到,获得积分10
33秒前
小比熊完成签到,获得积分10
34秒前
Hello应助awspring采纳,获得10
35秒前
DNAdamage发布了新的文献求助10
36秒前
37秒前
39秒前
40秒前
xuanxuan完成签到,获得积分20
40秒前
jj完成签到,获得积分10
41秒前
fuchao完成签到,获得积分20
41秒前
42秒前
猫和老鼠发布了新的文献求助10
44秒前
共享精神应助milan001采纳,获得10
45秒前
卷卷完成签到,获得积分10
45秒前
拼搏煎蛋完成签到,获得积分10
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003