MDSCAN: RMSD-based HDBSCAN clustering of long molecular dynamics

计算机科学 聚类分析 理论计算机科学 人工智能
作者
Roy González‐Alemán,Daniel Platero-Rochart,Alejandro Rodríguez-Serradet,Erix W. Hernández‐Rodríguez,Julio Caballero,Fabrice Leclerc,Luís A. Montero
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (23): 5191-5198 被引量:6
标识
DOI:10.1093/bioinformatics/btac666
摘要

Abstract Motivation The term clustering designates a comprehensive family of unsupervised learning methods allowing to group similar elements into sets called clusters. Geometrical clustering of molecular dynamics (MD) trajectories is a well-established analysis to gain insights into the conformational behavior of simulated systems. However, popular variants collapse when processing relatively long trajectories because of their quadratic memory or time complexity. From the arsenal of clustering algorithms, HDBSCAN stands out as a hierarchical density-based alternative that provides robust differentiation of intimately related elements from noise data. Although a very efficient implementation of this algorithm is available for programming-skilled users (HDBSCAN*), it cannot treat long trajectories under the de facto molecular similarity metric RMSD. Results Here, we propose MDSCAN, an HDBSCAN-inspired software specifically conceived for non-programmers users to perform memory-efficient RMSD-based clustering of long MD trajectories. Methodological improvements over the original version include the encoding of trajectories as a particular class of vantage-point tree (decreasing time complexity), and a dual-heap approach to construct a quasi-minimum spanning tree (reducing memory complexity). MDSCAN was able to process a trajectory of 1 million frames using the RMSD metric in about 21 h with <8 GB of RAM, a task that would have taken a similar time but more than 32 TB of RAM with the accelerated HDBSCAN* implementation generally used. Availability and implementation The source code and documentation of MDSCAN are free and publicly available on GitHub (https://github.com/LQCT/MDScan.git) and as a PyPI package (https://pypi.org/project/mdscan/). Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助Passer采纳,获得10
刚刚
Chao发布了新的文献求助10
1秒前
1秒前
三哥完成签到,获得积分10
1秒前
科研通AI6应助干净冬莲采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
4秒前
小马甲应助科研老炮采纳,获得10
4秒前
Owen应助周周周周周采纳,获得10
4秒前
顾矜应助什么都不懂采纳,获得10
4秒前
研友_VZG7GZ应助Chao采纳,获得10
6秒前
7秒前
UMA发布了新的文献求助10
8秒前
8秒前
11完成签到,获得积分10
8秒前
9秒前
9秒前
bjyx发布了新的文献求助10
9秒前
Yang发布了新的文献求助10
9秒前
丘比特应助哈哈哈哈哈哈采纳,获得10
10秒前
寻找论文完成签到,获得积分10
10秒前
0128lun发布了新的文献求助10
11秒前
11秒前
科研川完成签到 ,获得积分10
11秒前
12秒前
镓氧锌钇铀应助li采纳,获得20
12秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
时尚捕发布了新的文献求助10
14秒前
14秒前
15秒前
orixero应助arrebol采纳,获得10
15秒前
斯文败类应助Yang采纳,获得10
16秒前
所所应助幽默的沁采纳,获得10
16秒前
咯咚发布了新的文献求助10
17秒前
文闵发布了新的文献求助10
17秒前
杰杰完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914