亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Single-cell RNA sequencing and lineage tracing confirm mesenchyme to epithelial transformation (MET) contributes to repair of the endometrium at menstruation

间质细胞 间充质 生物 蜕膜化 人口 细胞生物学 上皮 子宫内膜 间充质干细胞 病理 癌症研究 医学 内分泌学 遗传学 环境卫生
作者
Phoebe M. Kirkwood,Douglas A Gibson,Isaac Shaw,Ross Dobie,Olympia Kelepouri,Neil C. Henderson,Philippa T. K. Saunders
出处
期刊:eLife [eLife Sciences Publications Ltd]
卷期号:11 被引量:25
标识
DOI:10.7554/elife.77663
摘要

The human endometrium experiences repetitive cycles of tissue wounding characterised by piecemeal shedding of the surface epithelium and rapid restoration of tissue homeostasis. In this study, we used a mouse model of endometrial repair and three transgenic lines of mice to investigate whether epithelial cells that become incorporated into the newly formed luminal epithelium have their origins in one or more of the mesenchymal cell types present in the stromal compartment of the endometrium. Using scRNAseq, we identified a novel population of PDGFRb + mesenchymal stromal cells that developed a unique transcriptomic signature in response to endometrial breakdown/repair. These cells expressed genes usually considered specific to epithelial cells and in silico trajectory analysis suggested they were stromal fibroblasts in transition to becoming epithelial cells. To confirm our hypothesis we used a lineage tracing strategy to compare the fate of stromal fibroblasts (PDGFRa+) and stromal perivascular cells (NG2/CSPG4+). We demonstrated that stromal fibroblasts can undergo a mesenchyme to epithelial transformation and become incorporated into the re-epithelialised luminal surface of the repaired tissue. This study is the first to discover a novel population of wound-responsive, plastic endometrial stromal fibroblasts that contribute to the rapid restoration of an intact luminal epithelium during endometrial repair. These findings form a platform for comparisons both to endometrial pathologies which involve a fibrotic response (Asherman's syndrome, endometriosis) as well as other mucosal tissues which have a variable response to wounding.The human uterus is a formidable organ. From puberty to menopause, it completely sheds off its internal lining every 28 days or so, creating what is in effect a large open wound. Unlike the skin or other parts of the body, however, this tissue can quickly repair itself without scarring. This fascinating process remains poorly understood, partly because human samples and animal models that mimic human menstruation are still lacking. This makes it difficult to grasp how various types of uterine cells get mobilised for healing. To fill this gap, Kirkwood et al. focused on fibroblasts, a heterogenous cell population which helps to support the epithelial cells lining the inside of the uterus. How these cells responded to the advent of menstruation was examined in female mice genetically manipulated to have human-like periods. A method known as single-cell RNAseq was used to track which genes were active in each of these cells before, one day and two days after period onset. This revealed the existence of a subpopulation of cells which only appeared when wound healing was most needed. These ‘repair-specific’ fibroblasts expressed a mixture of genes; those typical of fibroblasts but also some known to be active in the epithelial cells lining the uterus. This suggests that the cells were in the process of changing their identity so they could remake the uterine layer lost during a period. And indeed, labelling these fibroblasts with a fluorescent tag showed that, during healing, they had migrated from within the uterine tissue to become part of its newly restored internal surface. These results represent the first evidence that fibroblasts play a direct role in repairing the uterus during menstruation. From endometriosis to infertility, the lives of millions of people around the world are impacted by disorders which affect the uterine lining. A better understanding of how the uterus can fix itself month after month could help to find new treatments for these conditions. This knowledge could also be useful for to address abnormal wound healing in the skin and other tissues, as this process often involves fibroblasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
30秒前
桐桐应助科研通管家采纳,获得10
57秒前
清爽的大树完成签到,获得积分10
1分钟前
HYQ完成签到 ,获得积分10
1分钟前
1分钟前
yy发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
e麓绝尘完成签到 ,获得积分10
2分钟前
科研通AI5应助xiaxia采纳,获得10
2分钟前
2分钟前
2分钟前
jiacheng发布了新的文献求助10
2分钟前
三块石头发布了新的文献求助10
2分钟前
一只商路神完成签到 ,获得积分10
3分钟前
三块石头完成签到,获得积分10
3分钟前
科研通AI5应助yy采纳,获得10
3分钟前
Becky完成签到 ,获得积分10
3分钟前
3分钟前
xiaxia发布了新的文献求助10
3分钟前
3分钟前
ymt发布了新的文献求助10
3分钟前
jessicaw完成签到,获得积分0
3分钟前
3分钟前
传奇3应助ymt采纳,获得10
4分钟前
ymt完成签到,获得积分10
4分钟前
苗小天发布了新的文献求助10
4分钟前
苗小天完成签到,获得积分10
4分钟前
xiaxia完成签到,获得积分10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
今后应助Lss采纳,获得10
4分钟前
Qimier完成签到 ,获得积分10
5分钟前
高伟杰完成签到,获得积分10
5分钟前
jiacheng完成签到,获得积分10
6分钟前
6分钟前
孙泉发布了新的文献求助10
6分钟前
6分钟前
keyboy发布了新的文献求助10
6分钟前
冷傲迎梅完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910068
求助须知:如何正确求助?哪些是违规求助? 4186069
关于积分的说明 12999011
捐赠科研通 3953339
什么是DOI,文献DOI怎么找? 2167876
邀请新用户注册赠送积分活动 1186328
关于科研通互助平台的介绍 1093381