Single-cell RNA sequencing and lineage tracing confirm mesenchyme to epithelial transformation (MET) contributes to repair of the endometrium at menstruation

间质细胞 间充质 生物 蜕膜化 人口 细胞生物学 上皮 子宫内膜 间充质干细胞 病理 癌症研究 医学 内分泌学 遗传学 环境卫生
作者
Phoebe M. Kirkwood,Douglas A Gibson,Isaac Shaw,Ross Dobie,Olympia Kelepouri,Neil C. Henderson,Philippa T. K. Saunders
出处
期刊:eLife [eLife Sciences Publications, Ltd.]
卷期号:11 被引量:25
标识
DOI:10.7554/elife.77663
摘要

The human endometrium experiences repetitive cycles of tissue wounding characterised by piecemeal shedding of the surface epithelium and rapid restoration of tissue homeostasis. In this study, we used a mouse model of endometrial repair and three transgenic lines of mice to investigate whether epithelial cells that become incorporated into the newly formed luminal epithelium have their origins in one or more of the mesenchymal cell types present in the stromal compartment of the endometrium. Using scRNAseq, we identified a novel population of PDGFRb + mesenchymal stromal cells that developed a unique transcriptomic signature in response to endometrial breakdown/repair. These cells expressed genes usually considered specific to epithelial cells and in silico trajectory analysis suggested they were stromal fibroblasts in transition to becoming epithelial cells. To confirm our hypothesis we used a lineage tracing strategy to compare the fate of stromal fibroblasts (PDGFRa+) and stromal perivascular cells (NG2/CSPG4+). We demonstrated that stromal fibroblasts can undergo a mesenchyme to epithelial transformation and become incorporated into the re-epithelialised luminal surface of the repaired tissue. This study is the first to discover a novel population of wound-responsive, plastic endometrial stromal fibroblasts that contribute to the rapid restoration of an intact luminal epithelium during endometrial repair. These findings form a platform for comparisons both to endometrial pathologies which involve a fibrotic response (Asherman's syndrome, endometriosis) as well as other mucosal tissues which have a variable response to wounding.The human uterus is a formidable organ. From puberty to menopause, it completely sheds off its internal lining every 28 days or so, creating what is in effect a large open wound. Unlike the skin or other parts of the body, however, this tissue can quickly repair itself without scarring. This fascinating process remains poorly understood, partly because human samples and animal models that mimic human menstruation are still lacking. This makes it difficult to grasp how various types of uterine cells get mobilised for healing. To fill this gap, Kirkwood et al. focused on fibroblasts, a heterogenous cell population which helps to support the epithelial cells lining the inside of the uterus. How these cells responded to the advent of menstruation was examined in female mice genetically manipulated to have human-like periods. A method known as single-cell RNAseq was used to track which genes were active in each of these cells before, one day and two days after period onset. This revealed the existence of a subpopulation of cells which only appeared when wound healing was most needed. These ‘repair-specific’ fibroblasts expressed a mixture of genes; those typical of fibroblasts but also some known to be active in the epithelial cells lining the uterus. This suggests that the cells were in the process of changing their identity so they could remake the uterine layer lost during a period. And indeed, labelling these fibroblasts with a fluorescent tag showed that, during healing, they had migrated from within the uterine tissue to become part of its newly restored internal surface. These results represent the first evidence that fibroblasts play a direct role in repairing the uterus during menstruation. From endometriosis to infertility, the lives of millions of people around the world are impacted by disorders which affect the uterine lining. A better understanding of how the uterus can fix itself month after month could help to find new treatments for these conditions. This knowledge could also be useful for to address abnormal wound healing in the skin and other tissues, as this process often involves fibroblasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到,获得积分10
刚刚
张啊啊啊啊a完成签到,获得积分10
1秒前
2秒前
大个应助见到你很高兴OuO采纳,获得10
4秒前
whyyy6发布了新的文献求助10
5秒前
5秒前
丘比特应助Cynthia采纳,获得30
6秒前
6秒前
6秒前
cssfsa发布了新的文献求助30
7秒前
8秒前
鱼辞发布了新的文献求助30
9秒前
祥瑞发布了新的文献求助10
9秒前
10秒前
李爱国应助牛阳雨采纳,获得10
11秒前
共享精神应助仁爱曼梅采纳,获得10
12秒前
无限无声完成签到 ,获得积分10
12秒前
cccr完成签到,获得积分10
13秒前
共享精神应助舒适的素采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
星辰大海应助gzmejiji采纳,获得10
15秒前
曾泓跃发布了新的文献求助10
16秒前
16秒前
归尘应助二十一日采纳,获得30
17秒前
Litm完成签到 ,获得积分10
17秒前
18秒前
liu11发布了新的文献求助10
19秒前
李墩墩发布了新的文献求助10
20秒前
22秒前
RR完成签到 ,获得积分10
22秒前
22秒前
wanci应助99910119采纳,获得10
24秒前
liu11完成签到,获得积分10
25秒前
26秒前
热情冬灵发布了新的文献求助10
26秒前
Hannah发布了新的文献求助10
27秒前
希望天下0贩的0应助mym采纳,获得10
27秒前
舒适的素发布了新的文献求助10
27秒前
fzzf发布了新的文献求助10
28秒前
青筠发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425064
求助须知:如何正确求助?哪些是违规求助? 4539194
关于积分的说明 14166180
捐赠科研通 4456338
什么是DOI,文献DOI怎么找? 2444167
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412494