Peien Luo,Zhonggang Yin,Dongsheng Yuan,Fengtao Gao,Jing Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers] 日期:2023-01-01卷期号:72: 1-11被引量:16
标识
DOI:10.1109/tim.2023.3278289
摘要
The fault diagnosis method based on generative adversarial networks (GAN) has been successfully applied to the early fault detection of motor bearings, and has effectively solved the problems of small samples, unlabeled sample features and data imbalance in early faults. However, the existing methods ignore the weak features of bearing vibration signals when solving the problem of missing early fault samples, which seriously affects the accuracy of diagnosis results. In addition, a large amount of human parameter adjustment work is required during the network model training process. This makes the whole diagnosis process lack of objectivity and intelligence. To address these issues, this paper proposes an intelligent diagnosis algorithm for early faults of motor bearings based on Wasserstein generative adversarial network meta learning (WGANML). First, the method performs feature extraction on the collected bearing vibration signals. Then, the generation of missing samples and the enhancement of weak features are completed by using the game between the generative and discriminative models. Second, to get rid of manual intervention, meta learning (ML) is applied to Wasserstein Distance Generative Adversarial Networks (WGAN) parameter variation training for the first time. Finally, the feasibility and effectiveness of the proposed WGANML algorithm are proved by the open data set of Case Western Reserve University and the data of the motor bearing fault experimental platform. In addition, compared with the existing advanced methods, the superiority of the proposed method in motor bearing early fault diagnosis is further verified.