Parametric design of curved hydrocyclone and its optimization based on artificial neural networks prediction

水力旋流器 人工神经网络 参数统计 参数化模型 参数化设计 工程类 计算机科学 人工智能 数学 机械 物理 统计
作者
Yan Zheng,Jian‐gang Wang,Sheng Wang,Mo-chuan Sun,Xiaoyan Liu
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:353: 128445-128445
标识
DOI:10.1016/j.seppur.2024.128445
摘要

In order to obtain a higher particle separation efficiency, a method of parametric design of the cylinder cone section of curved hydrocyclone based on control points and data points is proposed. The radial diameters were used as input variables to the BP neural network to predict separation performance, which makes it feasible to optimize the profile of the cylinder and cone section of the curved hydrocyclone. The separation efficiency of Bezier-Curved-Cone hydrocyclone (BCCH) designed using control points is up to 69.24 %, and the separation efficiency of Spline-Curved-Cone hydrocyclone (SCCH) designed using data points is up to 73.30 %, both of which are higher than that of the conventional Thew's class hydrocyclone (with a separation efficiency of 62.43 %). Meanwhile, the pressure drop of BCCH is the lowest among all of the five hydrocyclones. No.10 hydrocyclone was predicted to be the best one with separation efficiency up to 78.41 % using BP neural network, which was experimentally verified. The novel hydrocyclones with curved profile provides new approach to enhancing separation performance, and the research costs can be reduced by using neural network-based performance prediction and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅色墨水发布了新的文献求助10
4秒前
5秒前
英姑应助优美的白昼采纳,获得10
6秒前
勤奋的风华完成签到,获得积分20
7秒前
毛彬完成签到,获得积分20
8秒前
颜路完成签到,获得积分10
8秒前
情怀应助丸橙采纳,获得10
9秒前
和谐雁荷完成签到 ,获得积分10
10秒前
谁猪沉浮完成签到,获得积分10
11秒前
12秒前
15秒前
16秒前
17秒前
乌力吉完成签到,获得积分20
18秒前
19秒前
23秒前
Akim应助矮小的乐菱采纳,获得10
26秒前
之道发布了新的文献求助10
28秒前
王小鱼发布了新的文献求助30
28秒前
Rhan完成签到,获得积分10
29秒前
MYunn发布了新的文献求助10
30秒前
38秒前
我是老大应助dandan采纳,获得10
38秒前
43秒前
44秒前
44秒前
Yifan2024应助王小鱼采纳,获得30
45秒前
dandan发布了新的文献求助10
47秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
Orange应助科研通管家采纳,获得10
48秒前
冷静凌旋应助CY03采纳,获得10
49秒前
邹随阴发布了新的文献求助10
50秒前
53秒前
zhanggq123发布了新的文献求助10
56秒前
Yifan2024应助烹全鱼宴采纳,获得30
56秒前
59秒前
phq0906发布了新的文献求助30
1分钟前
张瑞雪完成签到 ,获得积分10
1分钟前
一叶清尘完成签到,获得积分10
1分钟前
酷波er应助遇见飞儿采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375973
求助须知:如何正确求助?哪些是违规求助? 2992287
关于积分的说明 8750203
捐赠科研通 2676626
什么是DOI,文献DOI怎么找? 1466189
科研通“疑难数据库(出版商)”最低求助积分说明 678131
邀请新用户注册赠送积分活动 669801