亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TC–Radar: Transformer–CNN Hybrid Network for Millimeter-Wave Radar Object Detection

计算机科学 雷达 激光雷达 卷积神经网络 变压器 实时计算 极高频率 人工智能 数据挖掘 遥感 电信 电压 地质学 物理 量子力学
作者
Fengde Jia,Chenyang Li,Siyi Bi,Junhui Qian,L. H. Wei,Guohao Sun
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (16): 2881-2881 被引量:2
标识
DOI:10.3390/rs16162881
摘要

In smart transportation, assisted driving relies on data integration from various sensors, notably LiDAR and cameras. However, their optical performance can degrade under adverse weather conditions, potentially compromising vehicle safety. Millimeter-wave radar, which can overcome these issues more economically, has been re-evaluated. Despite this, developing an accurate detection model is challenging due to significant noise interference and limited semantic information. To address these practical challenges, this paper presents the TC–Radar model, a novel approach that synergistically integrates the strengths of transformer and the convolutional neural network (CNN) to optimize the sensing potential of millimeter-wave radar in smart transportation systems. The rationale for this integration lies in the complementary nature of CNNs, which are adept at capturing local spatial features, and transformers, which excel at modeling long-range dependencies and global context within data. This hybrid approach allows for a more robust and accurate representation of radar signals, leading to enhanced detection performance. A key innovation of our approach is the introduction of the Cross-Attention (CA) module, which facilitates efficient and dynamic information exchange between the encoder and decoder stages of the network. This CA mechanism ensures that critical features are accurately captured and transferred, thereby significantly improving the overall network performance. In addition, the model contains the dense information fusion block (DIFB) to further enrich the feature representation by integrating different high-frequency local features. This integration process ensures thorough incorporation of key data points. Extensive tests conducted on the CRUW and CARRADA datasets validate the strengths of this method, with the model achieving an average precision (AP) of 83.99% and a mean intersection over union (mIoU) of 45.2%, demonstrating robust radar sensing capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jerry完成签到,获得积分10
刚刚
8秒前
科研通AI2S应助嫤姝采纳,获得10
10秒前
Joeswith完成签到,获得积分10
12秒前
12秒前
科研通AI2S应助嫤姝采纳,获得10
15秒前
22秒前
阿鑫完成签到 ,获得积分10
23秒前
amit_弢完成签到,获得积分10
23秒前
zkk完成签到 ,获得积分10
26秒前
HY发布了新的文献求助10
27秒前
Orange应助Jonah采纳,获得10
29秒前
1461644768完成签到,获得积分10
34秒前
逸风望完成签到,获得积分10
39秒前
起风了完成签到 ,获得积分10
41秒前
42秒前
义气觅荷发布了新的文献求助10
48秒前
深情的一曲完成签到,获得积分10
50秒前
大模型应助LLL采纳,获得10
52秒前
Jamie发布了新的文献求助10
54秒前
59秒前
Du发布了新的文献求助20
1分钟前
Jonah发布了新的文献求助10
1分钟前
余念安完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
suhua完成签到,获得积分20
1分钟前
Yam呀完成签到 ,获得积分10
1分钟前
caitlin完成签到 ,获得积分10
1分钟前
feng完成签到 ,获得积分10
1分钟前
沙砾完成签到,获得积分10
1分钟前
Jonah完成签到,获得积分20
1分钟前
Jamie完成签到,获得积分10
1分钟前
1分钟前
义气觅荷完成签到,获得积分20
1分钟前
海燕发布了新的文献求助30
1分钟前
LLL发布了新的文献求助10
1分钟前
Du完成签到,获得积分20
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460014
求助须知:如何正确求助?哪些是违规求助? 3054351
关于积分的说明 9041742
捐赠科研通 2743636
什么是DOI,文献DOI怎么找? 1505027
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860