Efficient and Accurate Semi-automatic Neuron Tracing with Extended Reality

计算机科学 计算机图形学(图像) 追踪 虚拟现实 可视化 数据可视化 人工智能 光线追踪(物理) 计算机视觉 程序设计语言 物理 量子力学
作者
Jie Chen,Zexin Yuan,Jiaqi Xi,Ziqin Gao,Ying Li,Xiaoqiang Zhu,Yun Shi,Frank Guan,Yimin Wang
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tvcg.2024.3456197
摘要

Neuron tracing, alternately referred to as neuron reconstruction, is the procedure for extracting the digital representation of the three-dimensional neuronal morphology from stacks of microscopic images. Achieving accurate neuron tracing is critical for profiling the neuroanatomical structure at single-cell level and analyzing the neuronal circuits and projections at whole-brain scale. However, the process often demands substantial human involvement and represents a nontrivial task. Conventional solutions towards neuron tracing often contend with challenges such as non-intuitive user interactions, suboptimal data generation throughput, and ambiguous visualization. In this paper, we introduce a novel method that leverages the power of extended reality (XR) for intuitive and progressive semi-automatic neuron tracing in real time. In our method, we have defined a set of interactors for controllable and efficient interactions for neuron tracing in an immersive environment. We have also developed a GPU-accelerated automatic tracing algorithm that can generate updated neuron reconstruction in real time. In addition, we have built a visualizer for fast and improved visual experience, particularly when working with both volumetric images and 3D objects. Our method has been successfully implemented with one virtual reality (VR) headset and one augmented reality (AR) headset with satisfying results achieved. We also conducted two user studies and proved the effectiveness of the interactors and the efficiency of our method in comparison with other approaches for neuron tracing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee完成签到,获得积分10
1秒前
1秒前
2秒前
今后应助OHDJSZMS采纳,获得10
2秒前
狠毒的小龙虾完成签到,获得积分10
3秒前
桐桐应助xujie采纳,获得10
3秒前
且陶陶发布了新的文献求助10
3秒前
3秒前
冰芯BINGXIN发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
hhhblabla应助果车采纳,获得20
4秒前
天天快乐应助袁科研采纳,获得10
4秒前
HEIKU应助upsoar采纳,获得10
5秒前
打打应助小马哥采纳,获得10
6秒前
7秒前
汉堡包应助imomo999采纳,获得10
8秒前
MP发布了新的文献求助10
8秒前
nono完成签到,获得积分10
9秒前
bjbmtxy完成签到,获得积分10
9秒前
9秒前
cxr关注了科研通微信公众号
9秒前
9秒前
赘婿应助潘婷婷呀采纳,获得10
10秒前
MT发布了新的文献求助30
10秒前
含糊的寇完成签到,获得积分10
10秒前
做科研的蒋完成签到,获得积分10
11秒前
没有人发布了新的文献求助50
11秒前
橙子给橙子的求助进行了留言
11秒前
11秒前
12秒前
12秒前
xdlongchem发布了新的文献求助10
12秒前
英俊的铭应助花痴的芷荷采纳,获得10
13秒前
迟大猫应助bjbmtxy采纳,获得30
13秒前
14秒前
火星上易真完成签到 ,获得积分10
14秒前
14秒前
15秒前
852应助MYC007采纳,获得10
15秒前
大力世界发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515077
求助须知:如何正确求助?哪些是违规求助? 3097476
关于积分的说明 9235512
捐赠科研通 2792384
什么是DOI,文献DOI怎么找? 1532451
邀请新用户注册赠送积分活动 712103
科研通“疑难数据库(出版商)”最低求助积分说明 707107