高氧
基因敲除
微泡
细胞生物学
流式细胞术
细胞凋亡
化学
外体
氧化应激
信号转导
小RNA
分子生物学
生物
生物化学
基因
有机化学
氧气
作者
Dongmei Zou,Jinwen Liao,Min Xiao,Liying Liang,Mingguo Xu
标识
DOI:10.1096/fj.202400374r
摘要
Abstract Mesenchymal stem cells (MSC)‐derived exosomes (Exo) are a possible option for hyperoxia‐induced lung injury (HLI). We wanted to see if melatonin (MT)‐pretreated MSC‐derived exosomes (MT‐Exo) were more effective against HLI, and we also tried to figure out the underlying mechanism. HLI models were established by hyperoxia exposure. HE staining was adopted to analyze lung pathological changes. MTT and flow cytometry were used to determine cell viability and apoptosis, respectively. The mitochondrial membrane potential (MMP) was analyzed using the JC‐1 probe. LDH, ROS, SOD, and GSH‐Px levels were examined by the corresponding kits. The interactions between miR‐18a‐5p, PUM2, and DUB3 were analyzed by molecular interaction experiments. MT‐Exo could effectively inhibit hyperoxia‐induced oxidative stress, inflammatory injury, and apoptosis in lung epithelial cells, while these effects of MT‐Exo were weakened by miR‐18a‐5p knockdown in MSCs. miR‐18a‐5p reduced PUM2 expression in MLE‐12 cells by directly targeting PUM2. In addition, PUM2 inactivated the Nrf2/HO‐1 signaling pathway by promoting DUB3 mRNA decay post‐transcriptionally. As expected, PUM2 overexpression or DUB3 knockdown abolished the protective effect of MT‐Exo on hyperoxia‐induced lung epithelial cell injury. MT‐Exo carrying miR‐18a‐5p reduced hyperoxia‐mediated lung injury in mice through activating Nrf2/HO‐1 pathway. MT reduced PUM2 expression and subsequently activated the DUB3/Nrf2/HO‐1 signal axis by increasing miR‐18a‐5p expression in MSC‐derived exosomes to alleviate HLI.
科研通智能强力驱动
Strongly Powered by AbleSci AI