Multi-Energy Load Prediction Method for Integrated Energy System Based on Fennec Fox Optimization Algorithm and Hybrid Kernel Extreme Learning Machine

极限学习机 均方误差 随机性 计算机科学 算法 能量(信号处理) 平均绝对百分比误差 相关系数 人工智能 机器学习 数学优化 统计 数学 人工神经网络
作者
Jing Wang,Deyi Li,Wenbo Wang
出处
期刊:Entropy [MDPI AG]
卷期号:26 (8): 699-699
标识
DOI:10.3390/e26080699
摘要

To meet the challenges of energy sustainability, the integrated energy system (IES) has become a key component in promoting the development of innovative energy systems. Accurate and reliable multivariate load prediction is a prerequisite for IES optimal scheduling and steady running, but the uncertainty of load fluctuation and many influencing factors increase the difficulty of forecasting. Therefore, this article puts forward a multi-energy load prediction approach of the IES, which combines the fennec fox optimization algorithm (FFA) and hybrid kernel extreme learning machine. Firstly, the comprehensive weight method is used to combine the entropy weight method and Pearson correlation coefficient, fully considering the information content and correlation, selecting the key factors affecting the prediction, and ensuring that the input features can effectively modify the prediction results. Secondly, the coupling relationship between the multi-energy load is learned and predicted using the hybrid kernel extreme learning machine. At the same time, the FFA is used for parameter optimization, which reduces the randomness of parameter setting. Finally, the approach is utilized for the measured data at Arizona State University to verify its effectiveness in multi-energy load forecasting. The results indicate that the mean absolute error (MAE) of the proposed method is 0.0959, 0.3103 and 0.0443, respectively. The root mean square error (RMSE) is 0.1378, 0.3848 and 0.0578, respectively. The weighted mean absolute percentage error (WMAPE) is only 1.915%. Compared to other models, this model has a higher accuracy, with the maximum reductions on MAE, RMSE and WMAPE of 0.3833, 0.491 and 2.8138%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yueoho发布了新的文献求助10
1秒前
小巧碎片发布了新的文献求助10
2秒前
小方完成签到,获得积分10
2秒前
乐乐应助slby采纳,获得10
3秒前
3秒前
顺利一德发布了新的文献求助10
3秒前
alexye619完成签到 ,获得积分10
4秒前
yangliu071998发布了新的文献求助10
5秒前
6秒前
执着的松鼠完成签到,获得积分10
6秒前
科研废物完成签到,获得积分10
8秒前
搜集达人应助yueoho采纳,获得10
9秒前
zzzkray完成签到,获得积分10
10秒前
无花果应助执着的松鼠采纳,获得10
10秒前
平平无奇小天才完成签到,获得积分10
11秒前
linya发布了新的文献求助10
11秒前
slby完成签到,获得积分20
11秒前
12秒前
13秒前
李白易完成签到,获得积分10
13秒前
苏毓完成签到,获得积分20
13秒前
zzzkray发布了新的文献求助10
14秒前
14秒前
香菜碗里来完成签到,获得积分10
15秒前
传奇3应助shihshi采纳,获得10
15秒前
情怀应助游戏人间采纳,获得10
16秒前
ww发布了新的文献求助10
17秒前
17秒前
17秒前
迷人幻波发布了新的文献求助10
17秒前
CC发布了新的文献求助10
18秒前
田様应助顺利一德采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
嗯哼应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
哈哈发布了新的文献求助10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248438
求助须知:如何正确求助?哪些是违规求助? 2891833
关于积分的说明 8268874
捐赠科研通 2559834
什么是DOI,文献DOI怎么找? 1388717
科研通“疑难数据库(出版商)”最低求助积分说明 650798
邀请新用户注册赠送积分活动 627775