Defect Engineering for High-Performance n-Type PbSe Thermoelectrics

声子 凝聚态物理 热导率 声子散射 空位缺陷 热电材料 电子迁移率 热电效应 化学 无定形固体 有效质量(弹簧-质量系统) 散射 材料科学 结晶学 物理 热力学 复合材料 光学 量子力学
作者
Chongjian Zhou,Yong Kyu Lee,Joonil Cha,Byeongjun Yoo,Sung‐Pyo Cho,Taeghwan Hyeon,In Jae Chung
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:140 (29): 9282-9290 被引量:157
标识
DOI:10.1021/jacs.8b05741
摘要

Introducing structural defects such as vacancies, nanoprecipitates, and dislocations is a proven means of reducing lattice thermal conductivity. However, these defects tend to be detrimental to carrier mobility. Consequently, the overall effects for enhancing ZT are often compromised. Indeed, developing strategies allowing for strong phonon scattering and high carrier mobility at the same time is a prime task in thermoelectrics. Here we present a high-performance thermoelectric system of Pb0.95(Sb0.033□0.017)Se1–yTey (□ = vacancy; y = 0–0.4) embedded with unique defect architecture. Given the mean free paths of phonons and electrons, we rationally integrate multiple defects that involve point defects, vacancy-driven dense dislocations, and Te-induced nanoprecipitates with different sizes and mass fluctuations. They collectively scatter thermal phonons in a wide range of frequencies to give lattice thermal conductivity of ∼0.4 W m–1 K–1, which approaches to the amorphous limit. Remarkably, Te alloying increases a density of nanoprecipitates that affect mobility negligibly and impede phonons significantly, and it also decreases a density of dislocations that scatter both electrons and phonons heavily. As y is increased to 0.4, electron mobility is enhanced and lattice thermal conductivity is decreased simultaneously. As a result, Pb0.95(Sb0.033□0.017)Se0.6Te0.4 exhibits the highest ZT ∼ 1.5 at 823 K, which is attributed to the markedly enhanced power factor and reduced lattice thermal conductivity, in comparison with a ZT ∼ 0.9 for Pb0.95(Sb0.033□0.017)Se that contains heavy dislocations only. These results highlight the potential of defect engineering to modulate electrical and thermal transport properties independently. We also reveal the defect formation mechanisms for dislocations and nanoprecipitates embedded in Pb0.95(Sb0.033□0.017)Se0.6Te0.4 by atomic resolution spherical aberration-corrected scanning transmission electron microscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助LIKO采纳,获得10
刚刚
1秒前
无花果应助lewe采纳,获得10
2秒前
芝麻糊应助Lotus采纳,获得10
3秒前
cy完成签到,获得积分10
3秒前
JamesPei应助石头采纳,获得10
4秒前
白学长应助lll采纳,获得50
4秒前
舒适听筠发布了新的文献求助10
5秒前
5秒前
8秒前
共享精神应助清新的静枫采纳,获得10
10秒前
慕青应助杰森斯坦虎采纳,获得10
10秒前
传奇3应助Taco采纳,获得10
11秒前
13秒前
xs发布了新的文献求助10
14秒前
SciGPT应助xuulanni采纳,获得10
14秒前
16秒前
深情安青应助陈住气采纳,获得10
17秒前
17秒前
17秒前
17秒前
Moihan完成签到,获得积分10
19秒前
20秒前
丘比特应助顺利的小丸子采纳,获得10
21秒前
xuan驳回了LLL应助
21秒前
21秒前
22秒前
23秒前
石头发布了新的文献求助10
23秒前
hh完成签到 ,获得积分20
24秒前
生命科学的第一推动力完成签到 ,获得积分10
24秒前
Taco发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
xuulanni发布了新的文献求助10
27秒前
fuguier发布了新的文献求助10
27秒前
英俊的铭应助踏实的酸奶采纳,获得10
28秒前
北风歌发布了新的文献求助10
28秒前
Lucas应助mint采纳,获得10
28秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462526
求助须知:如何正确求助?哪些是违规求助? 3056054
关于积分的说明 9050624
捐赠科研通 2745705
什么是DOI,文献DOI怎么找? 1506521
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677