The Indirect Role of Gluteus Medius Muscle in Knee Joint Stability during Unilateral Vertical Jump and Landing on Unstable Surface in Young Trained Males
(1) In the present investigation, we tested the hypothesis that unilateral countermovement jump performance is associated with knee joint stabilization ability during unilateral landing on unstable surface. (2) Twenty-five male sport students were tested for dynamometric knee extension and flexion, and hip abduction isometric strength. Myolectric activity of vastus lateralis and medialis, gluteus medius, and biceps femoris muscles were measured during unilateral countermovement vertical jump performed on a force plate, and during unilateral landing on unstable surface. (3) Vertical jump impulse negatively correlated with biceps femoris activation at landing. Participants with greater hip abduction force performed greater vertical jump impulse, and activated the biceps femoris less when landing on unstable surface. Furthermore, participants with smaller knee flexion/extension torque ratio increased biceps femoris/vastus medialis activation ratio at landing. (4) We conclude that hip abduction strength is an important contributor to unilateral vertical jump performance. Because biceps femoris is considered the synergist of the anterior cruciate ligament, we also propose that hip abductors are primary frontal plane protectors of the knee joint by reducing knee valgus and stress, allowing for smaller biceps femoris co-activation (secondary protection) at landing on unstable surface.