ISFrag: De Novo Recognition of In-Source Fragments for Liquid Chromatography–Mass Spectrometry Data

化学 质谱法 色谱法
作者
Jian Guo,Sam Shen,Shipei Xing,Huaxu Yu,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (29): 10243-10250 被引量:27
标识
DOI:10.1021/acs.analchem.1c01644
摘要

In-source fragmentation (ISF) is a naturally occurring phenomenon during electrospray ionization (ESI) in liquid chromatography-mass spectrometry (LC-MS) analysis. ISF leads to false metabolite annotation in untargeted metabolomics, prompting misinterpretation of the underlying biological mechanisms. Conventional metabolomic data cleaning mainly focuses on the annotation of adducts and isotopes, and the recognition of ISF features is mainly based on common neutral losses and the LC coelution pattern. In this work, we recognized three increasingly important patterns of ISF features, including (1) coeluting with their precursor ions, (2) being in the tandem MS (MS2) spectra of their precursor ions, and (3) sharing similar MS2 fragmentation patterns with their precursor ions. Based on these patterns, we developed an R package, ISFrag, to comprehensively recognize all possible ISF features from LC-MS data generated from full-scan, data-dependent acquisition, and data-independent acquisition modes without the assistance of common neutral loss information or MS2 spectral library. Tested using metabolite standards, we achieved a 100% correct recognition of level 1 ISF features and over 80% correct recognition for level 2 ISF features. Further application of ISFrag on untargeted metabolomics data allows us to identify ISF features that can potentially cause false metabolite annotation at an omics-scale. With the help of ISFrag, we performed a systematic investigation of how ISF features are influenced by different MS parameters, including capillary voltage, end plate offset, ion energy, and "collision energy". Our results show that while increasing energies can increase the number of real metabolic features and ISF features, the percentage of ISF features might not necessarily increase. Finally, using ISFrag, we created an ISF pathway to visualize the relationships between multiple ISF features that belong to the same precursor ion. ISFrag is freely available on GitHub (https://github.com/HuanLab/ISFrag).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
渤大彭于晏完成签到,获得积分10
2秒前
2秒前
3秒前
英俊的胜发布了新的文献求助20
3秒前
gar发布了新的文献求助30
6秒前
笛子发布了新的文献求助10
6秒前
6秒前
7秒前
Ste完成签到,获得积分10
8秒前
8秒前
壮观半鬼完成签到,获得积分10
9秒前
chen完成签到,获得积分10
10秒前
兔子爱吃胡萝卜完成签到,获得积分10
11秒前
圆圆姐姐发布了新的文献求助10
12秒前
独特天问发布了新的文献求助10
12秒前
lll完成签到,获得积分10
13秒前
小困完成签到,获得积分10
14秒前
14秒前
852应助小白菜采纳,获得10
14秒前
CipherSage应助Wht采纳,获得10
17秒前
下次一定发布了新的文献求助10
17秒前
大模型应助FAPI采纳,获得10
18秒前
戴好头盔搞科研完成签到,获得积分10
18秒前
在水一方应助温柔若颜采纳,获得10
19秒前
19秒前
清秀的惜萱完成签到,获得积分20
19秒前
19秒前
19秒前
科研通AI2S应助gar采纳,获得30
20秒前
张恒完成签到,获得积分10
22秒前
独特天问完成签到,获得积分10
22秒前
guofzh完成签到,获得积分10
24秒前
不配.应助shufessm采纳,获得10
24秒前
叙温雨发布了新的文献求助10
24秒前
到家了完成签到,获得积分20
25秒前
27秒前
哭泣的幻翠完成签到 ,获得积分10
28秒前
29秒前
壮观半鬼发布了新的文献求助10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149266
求助须知:如何正确求助?哪些是违规求助? 2800354
关于积分的说明 7839707
捐赠科研通 2457979
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706