Modified Parker's Method for Gravitational Forward and Inverse Modeling Using General Polyhedral Models

多面体 反演(地质) 引力势 算法 计算机科学 万有引力 反向 几何学 数学 地质学 物理 经典力学 构造盆地 古生物学
作者
Leyuan Wu
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:126 (10) 被引量:5
标识
DOI:10.1029/2021jb022553
摘要

Abstract We propose a new modified Parker's method for efficient gravitational forward modeling and inversion using general polyhedral models. We have made several important modifications to the classical method, including: (a) The new method is now applicable to a general polyhedron represented by triangulated surface or tetrahedral mesh, and with arbitrarily variable 3D density distribution. (b) An optimal Fourier‐domain sampling strategy is used to improve the numerical accuracy of the new algorithm significantly. (c) A simple and effective automatic layering technique is introduced to accelerate the convergence rate of Parker's method. The method is demonstrated using both synthetic and real polyhedral models, including a sphere model approximated by a polyhedron, two asteroids, a digital elevation model in the Himalaya region, and the Yucca Flat basin model in Nevada. The numerical results show that, compared with analytical solutions of polyhedral models in the space domain, the modified Parker's method can improve the computational efficiency by several orders of magnitude while obtaining almost the same simulation results. The difference is well below existing instrumentation error level. By embedding the new forward algorithm into an iterative process, it can be used for fast inversion of density interfaces. Our new method is suitable for the efficient modeling and inversion of gravitational potential, gravitational vector, and gravitational gradient tensor caused by polyhedral models with a large number of faces, representing geological abnormal bodies, asteroids, and single or multilayer density interface models with triangulated surfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助cuihl123采纳,获得10
刚刚
李浓完成签到,获得积分10
刚刚
DreamMaker发布了新的文献求助10
刚刚
mao12wang完成签到,获得积分10
1秒前
1秒前
bdvdsrwteges发布了新的文献求助10
2秒前
如约而至发布了新的文献求助20
2秒前
纯真的莫茗完成签到,获得积分10
2秒前
彭于晏应助超11采纳,获得10
3秒前
3秒前
gavincsu发布了新的文献求助10
3秒前
KSGGS给KSGGS的求助进行了留言
3秒前
flow驳回了Aria应助
3秒前
lixiunan完成签到,获得积分10
3秒前
3秒前
dildil发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
边瑞明完成签到,获得积分10
6秒前
Wang发布了新的文献求助10
7秒前
Jenny应助拼搏思卉采纳,获得10
7秒前
7秒前
神勇的雅香应助不喝可乐采纳,获得10
7秒前
清脆的白开水完成签到,获得积分10
7秒前
Hello应助善良过客采纳,获得10
7秒前
现实的曼荷完成签到,获得积分10
7秒前
7秒前
8秒前
zyyyy完成签到,获得积分10
8秒前
dd完成签到,获得积分20
8秒前
8秒前
混子发布了新的文献求助10
8秒前
HYG完成签到,获得积分10
9秒前
二橦完成签到 ,获得积分10
9秒前
熊博士完成签到,获得积分10
10秒前
哲000发布了新的文献求助10
10秒前
丰富的世界完成签到 ,获得积分10
10秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759