化学
溶剂化
单层
拉曼光谱
密度泛函理论
吸附
纳米尺度
相(物质)
甲醇
分子
化学物理
光化学
物理化学
计算化学
纳米技术
有机化学
生物化学
物理
材料科学
光学
作者
Feng Shao,Li-Qing Zheng,Jinggang Lan,Renato Zenobi
标识
DOI:10.1021/acs.analchem.1c03968
摘要
Self-assembled monolayers (SAMs) of thiolates on metal surfaces are of key importance for engineering surfaces with tunable properties. However, it remains challenging to understand binary thiolate SAMs on metals at the nanoscale under ambient conditions. Here, we employ tip-enhanced Raman spectroscopy (TERS) and density functional theory (DFT) calculations to investigate the local information of binary SAMs on Au(111) coadsorbed from an equimolar mixture of p-cyanobenzenethiol (pCTP) and p-aminothiophenol (pATP), including chemical composition, coadsorption behavior, phase segregation, plasmon-induced photocatalysis, and solvation effects. We found that upon competitive adsorption of pCTP and pATP on Au(111) from a methanolic solution, the coadsorption initially occurs randomly and homogeneously; eventually, pATP is replaced by pCTP through the gradual growth of pCTP nanodomains. TERS imaging also allows for visualization of the plasmon-induced coupling of pATP to p,p'-dimercaptoazobenzene (DMAB) and the solvation-induced phase segregation of the binary SAMs into nanodomains, with a spatial resolution of ∼9 nm under ambient conditions. According to DFT calculations, these aromatic thiolates differing only in their functional groups, -CN versus -NH2, show different adsorption energies on Au(111) in vacuum and methanol, and thus, the solvation effect on the adsorption energy of these thiolates in methanol can determine the dispersion state and replacement order of the binary thiolates on Au(111).
科研通智能强力驱动
Strongly Powered by AbleSci AI