Highly selective CO2/C2H2 separation with porous g-C9N7 nanosheets by charge and strain engineering

渗透 材料科学 化学工程 拉伤 气体分离 多孔性 电荷(物理) 应变工程 分子动力学 纳米技术 化学物理 复合材料 计算化学 化学 渗透 光电子学 医学 生物化学 物理 量子力学 内科学 工程类
作者
Xue Li,Wenhao He,Zilong Liu,Xiao Zhang,Zhao Li,Xiaonan Hou,Yueliang Liu,Jianwei Zhu,Xiaofang Li,Suian Zhang,Weichao Sun,Enze Xie,Guiwu Lu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:435: 134737-134737 被引量:14
标识
DOI:10.1016/j.cej.2022.134737
摘要

Efficient CO2/C2H2 separation at ambient conditions is an essential but challenging process owing to their similar molecular sizes and physical properties. In this work, a novel approach of charge/strain-regulated gas capture and separation was proposed, which offered the advantages of reversibility and controllable kinetics. Highly selective CO2 separation from CO2/C2H2 with porous g-C9N7 nanosheets were demonstrated with varying charge densities and strains using molecular dynamics (MD) simulations and first-principle density function theory (DFT) calculations. The remarkable CO2 permeance up to 5.85 × 107 GPU can be achieved by charge engineering. Under the condition of tensile strain, a controllable CO2 separation performance was exhibited, whose CO2 permeance increased with increasing the applied strain. The maximum permeance was 3.44 × 107 GPU with 9% strained g-C9N7 membrane. More interestingly, a promising approach combining the charge regulation with strain engineering was explored to investigate the synergistic effect. Under conditions of 2 e- charge and 3% tensile strain on g-C9N7 membrane, the CO2 permeance reached 4.24 × 107 GPU, which was 1.6 times of CO2 permeability when only 2 e- was added and 10 times of CO2 permeance when only 3% strain was added. Additionally, the energy barrier of CO2 decreased with the increasing degree of regulation (charge and strain engineering) on the g-C9N7 membrane, indicating that the g-C9N7 membrane can be served as an excellent candidate for CO2/C2H2 separation. These results provide useful guidance for developing advanced materials and applying new regulation techniques to realize highly tunable and selective CO2/C2H2 separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称完成签到,获得积分10
1秒前
1秒前
锅锅发布了新的文献求助10
1秒前
1秒前
1秒前
winwin完成签到,获得积分10
1秒前
美满西装完成签到,获得积分10
2秒前
2秒前
Zx950103发布了新的文献求助10
2秒前
天天快乐应助uu采纳,获得10
2秒前
科研通AI5应助牛牛采纳,获得10
3秒前
赘婿应助Nyxia采纳,获得10
3秒前
3秒前
英俊的铭应助热情孤丹采纳,获得10
3秒前
健忘瑾瑜完成签到,获得积分10
3秒前
roy_chiang发布了新的文献求助10
3秒前
4秒前
4秒前
kevin完成签到,获得积分10
4秒前
跳跃凡桃发布了新的文献求助10
5秒前
小马甲应助zjw采纳,获得10
5秒前
大鸣王潮完成签到,获得积分10
6秒前
钻石发布了新的文献求助10
6秒前
星辰大海应助椿上春树采纳,获得10
6秒前
秋慕蕊发布了新的文献求助10
6秒前
远方有个少年完成签到,获得积分10
6秒前
andy发布了新的文献求助30
6秒前
Abi发布了新的文献求助10
7秒前
李健应助曦子曦子采纳,获得10
7秒前
上官若男应助听话的亦云采纳,获得10
7秒前
大个应助kevin采纳,获得10
8秒前
zhangpeng发布了新的文献求助10
8秒前
徐biao发布了新的文献求助10
8秒前
Hello应助Damon采纳,获得10
8秒前
9秒前
9秒前
大鸣王潮发布了新的文献求助10
10秒前
10秒前
10秒前
秋暝寒衣发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246