Lead (Pb2+) ion sensor development using optical fiber gratings and nanocomposite materials

光纤布拉格光栅 材料科学 光纤 纳米复合材料 光纤传感器 栅栏 检出限 纤维 灵敏度(控制系统) 水溶液中的金属离子 环境污染 光电子学 纳米技术 计算机科学 金属 电子工程 电信 环境科学 化学 复合材料 波长 环境保护 色谱法 工程类 冶金
作者
Souvik Ghosh,Kasun Prabuddha Wasantha Dissanayake,S. Asokan,Tong Sun,B. M. A. Rahman,K. T. V. Grattan
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:364: 131818-131818 被引量:27
标识
DOI:10.1016/j.snb.2022.131818
摘要

Research on compact, flexible optical sensors for water quality monitoring, specifically targeting heavy metal ion monitoring, has become extremely important due to the increasing number of water pollution incidents seen worldwide where such heavy metals are involved. Optical fiber-based sensors provide an excellent basis for creating new sensing solutions across a wide area, including for energy, healthcare, structural monitoring, defense and importantly here for environmental monitoring. An innovative, cost-optimized sensor solution to better heavy metal detection is proposed, by introducing a hybrid optical fiber grating sensor system based on concatenating a Long Period Grating (LPG) and Fiber Bragg Grating (FBG) for the concurrent detection of an important, specific heavy metal ion pollutant (in this case lead (Pb2+)). The approach uses the functionalization of an optical fiber grating with a chemically synthesized novel nanocomposite material (together with temperature sensing to allow such corrections to be applied). Such a method not only significantly enhances the system sensitivity (achieving 2.547 nm/nM), with a detection limit (0.5 nM), and high selectivity to the Pb2+ ions, but also mitigates the shortcomings of cross-sensitivity seen with many such sensors. Furthermore, in this work, the incorporation of a forward Artificial Neural Network (ANN)-based predictive algorithm has been incorporated to create an effective, well-calibrated system whose characteristics as an intelligent, highly sensitive system has been demonstrated in the detection of the sub-nanomolar concentration of Pb2+ ion in drinking water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙文远完成签到,获得积分10
1秒前
Allen完成签到,获得积分10
1秒前
2秒前
Beatrice发布了新的文献求助30
2秒前
流子完成签到,获得积分10
3秒前
3秒前
惜曦完成签到 ,获得积分10
4秒前
此去经年完成签到 ,获得积分10
4秒前
4秒前
汤圆完成签到 ,获得积分10
5秒前
5秒前
duan完成签到,获得积分10
5秒前
淡淡的如松完成签到 ,获得积分10
5秒前
6秒前
啦啦啦完成签到,获得积分10
6秒前
6秒前
6秒前
可爱的函函应助gsh采纳,获得10
6秒前
guojingjing完成签到 ,获得积分10
7秒前
阔达磬发布了新的文献求助10
7秒前
看来斯蒂芬完成签到,获得积分10
7秒前
坤坤完成签到,获得积分10
7秒前
CL完成签到,获得积分10
7秒前
王_123123123123w完成签到 ,获得积分10
8秒前
暖阳完成签到 ,获得积分10
8秒前
零零壹完成签到 ,获得积分10
8秒前
John不想上班完成签到 ,获得积分10
9秒前
9秒前
9秒前
疯狂的含羞草应助魔幻真采纳,获得10
9秒前
杰尼龟006完成签到,获得积分10
10秒前
pine发布了新的文献求助10
10秒前
zhengzehong完成签到,获得积分10
10秒前
莴苣完成签到,获得积分10
10秒前
意志所向完成签到,获得积分10
11秒前
辰星怀瑾完成签到 ,获得积分10
11秒前
11秒前
pio完成签到,获得积分10
11秒前
m123发布了新的文献求助10
11秒前
lyy完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550536
求助须知:如何正确求助?哪些是违规求助? 3126839
关于积分的说明 9370757
捐赠科研通 2825985
什么是DOI,文献DOI怎么找? 1553508
邀请新用户注册赠送积分活动 724889
科研通“疑难数据库(出版商)”最低求助积分说明 714494