亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing responsiveness of pancreatic cancer cells to gemcitabine treatment under hypoxia by heme oxygenase-1 inhibition

吉西他滨 血红素加氧酶 癌症研究 肿瘤缺氧 胰腺癌 化学 内科学 细胞凋亡 血红素 医学 缺氧(环境) 癌症 药理学 化疗 生物 放射治疗 生物化学 有机化学 氧气
作者
Maher Y. Abdalla,Iman M. Ahmad,Satyanarayana Rachagani,Kasturi Banerjee,Christopher Thompson,H. Carlo Maurer,Kenneth P. Olive,Katie Bailey,Bradley E. Britigan,Sushil Kumar
出处
期刊:Translational Research [Elsevier]
卷期号:207: 56-69 被引量:34
标识
DOI:10.1016/j.trsl.2018.12.008
摘要

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and has one of the worst prognoses leading to a meager 5-year survival rate of ∼8%. Chemotherapy has had limited success in extending the life span of patients with advanced PDAC due to poor tumor perfusion and hypoxia-induced resistance. Hypoxia reprograms the gene expression profile and upregulates the expression of multiple genes including heme oxygenase-1 (HO-1), which provide survival advantage to PDAC cells. However, the relationships between HO-1, hypoxia, and response to chemotherapy is unclear. Our results showed that hypoxia upregulates the expression of HO-1 in PDAC cells, and HO-1 inhibition using the HO-1 inhibitors zinc protoporphyrin, tin protoporphyrin IX (SnPP), and HO-1 knockout using CRISPR/Cas9 suppresses the proliferation of PDAC cells under hypoxia and sensitize them to gemcitabine under in vitro conditions. Treating orthotopic tumors with SnPP, or SnPP in combination with gemcitabine, significantly reduced the weight of pancreatic tumors (P < 0.05), decreased metastasis and improved the efficacy of gemcitabine treatment (P < 0.05). Mechanistically, inhibition of HO-1 increased the production of reactive oxygen species as demonstrated by increased dihydroethidium, and Mitosox, disrupted glutathione cycle, and enhanced apoptosis. There was significant increase in cleaved caspase-3 staining in tumors after combined treatment with SnPP and gemcitabine comparing to control or gemcitabine alone. In addition, inhibiting HO-1 reduced expression of stemness markers (CD133, and CD44) as compared to control or gemcitabine. Overall, our study may present a novel therapeutic regimen that might be adopted for the treatment of PDAC patients. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and has one of the worst prognoses leading to a meager 5-year survival rate of ∼8%. Chemotherapy has had limited success in extending the life span of patients with advanced PDAC due to poor tumor perfusion and hypoxia-induced resistance. Hypoxia reprograms the gene expression profile and upregulates the expression of multiple genes including heme oxygenase-1 (HO-1), which provide survival advantage to PDAC cells. However, the relationships between HO-1, hypoxia, and response to chemotherapy is unclear. Our results showed that hypoxia upregulates the expression of HO-1 in PDAC cells, and HO-1 inhibition using the HO-1 inhibitors zinc protoporphyrin, tin protoporphyrin IX (SnPP), and HO-1 knockout using CRISPR/Cas9 suppresses the proliferation of PDAC cells under hypoxia and sensitize them to gemcitabine under in vitro conditions. Treating orthotopic tumors with SnPP, or SnPP in combination with gemcitabine, significantly reduced the weight of pancreatic tumors (P < 0.05), decreased metastasis and improved the efficacy of gemcitabine treatment (P < 0.05). Mechanistically, inhibition of HO-1 increased the production of reactive oxygen species as demonstrated by increased dihydroethidium, and Mitosox, disrupted glutathione cycle, and enhanced apoptosis. There was significant increase in cleaved caspase-3 staining in tumors after combined treatment with SnPP and gemcitabine comparing to control or gemcitabine alone. In addition, inhibiting HO-1 reduced expression of stemness markers (CD133, and CD44) as compared to control or gemcitabine. Overall, our study may present a novel therapeutic regimen that might be adopted for the treatment of PDAC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小郭子完成签到,获得积分20
10秒前
12秒前
13秒前
科目三应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
volvoamg发布了新的文献求助10
19秒前
31秒前
41秒前
53秒前
1分钟前
volvoamg发布了新的文献求助10
1分钟前
1分钟前
1分钟前
李清水发布了新的文献求助10
1分钟前
2分钟前
李清水完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
传奇3应助司徒无剑采纳,获得10
2分钟前
MS903完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
司徒无剑发布了新的文献求助10
2分钟前
CJW完成签到 ,获得积分10
2分钟前
3分钟前
司徒无剑完成签到,获得积分10
3分钟前
3分钟前
3分钟前
宝字盖发布了新的文献求助10
3分钟前
汉堡包应助宝字盖采纳,获得10
3分钟前
wujuan完成签到 ,获得积分10
3分钟前
3分钟前
qwdqw发布了新的文献求助10
3分钟前
qwdqw完成签到,获得积分10
3分钟前
4分钟前
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562020
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412594
捐赠科研通 2835934
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716878