Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma

竞争性内源性RNA 癌症研究 遗传学 核糖核酸 基因表达调控
作者
Yue Pan,Lingyun Lu,Junquan Chen,Yong Zhong,Zhehao Dai
出处
期刊:Hereditas 卷期号:155 (1): 21-21 被引量:21
标识
DOI:10.1186/s41065-018-0061-9
摘要

This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma by comprehensive bioinformatics analysis. Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein–protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network was established. Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A, FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55 edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12 target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes. Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈嘻嘻嘻嘻完成签到,获得积分10
刚刚
2秒前
Zee发布了新的文献求助10
4秒前
传奇3应助刘欢采纳,获得10
4秒前
赘婿应助刘欢采纳,获得10
4秒前
annafan应助刘欢采纳,获得10
4秒前
隐形曼青应助刘欢采纳,获得10
4秒前
李爱国应助刘欢采纳,获得10
4秒前
4秒前
李爱国应助刘欢采纳,获得10
4秒前
李爱国应助刘欢采纳,获得10
4秒前
斯文败类应助刘欢采纳,获得10
5秒前
Lin应助刘欢采纳,获得10
5秒前
汉堡包应助刘欢采纳,获得10
5秒前
活泼的曼寒完成签到,获得积分10
5秒前
研友_VZG7GZ应助yhltcm采纳,获得10
5秒前
gloria完成签到,获得积分10
6秒前
负责吃饭发布了新的文献求助10
6秒前
7秒前
8秒前
Dongbalal发布了新的文献求助10
8秒前
9秒前
9秒前
远方完成签到 ,获得积分10
9秒前
12秒前
威武冷雪完成签到,获得积分10
13秒前
皮皮发布了新的文献求助10
14秒前
AltairKing发布了新的文献求助10
15秒前
Frost完成签到,获得积分10
15秒前
17秒前
可爱的函函应助jade采纳,获得10
17秒前
FashionBoy应助活力小熊猫采纳,获得10
18秒前
mzbgnk发布了新的文献求助10
18秒前
呼吸之野应助hcch采纳,获得30
18秒前
是三石啊完成签到 ,获得积分10
18秒前
小黄同学爱学习完成签到 ,获得积分10
18秒前
19秒前
不爱吃韭菜完成签到 ,获得积分10
19秒前
想多睡会儿完成签到,获得积分10
23秒前
24秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464245
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057583
捐赠科研通 2747637
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696083