Automatic nodule detection for lung cancer in CT images: A review

计算机科学 肺癌筛查 稳健性(进化) 结核(地质) 肺癌 人工智能 医学物理学 领域(数学) 机器学习 数据挖掘 计算机断层摄影术 放射科 医学 病理 古生物学 生物化学 化学 数学 生物 纯数学 基因
作者
Guobin Zhang,Shan Jiang,Zhiyong Yang,Li Gong,Xiaodong Ma,Zeyang Zhou,Chao Bao,Qi Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:103: 287-300 被引量:118
标识
DOI:10.1016/j.compbiomed.2018.10.033
摘要

Automatic lung nodule detection has great significance for treating lung cancer and increasing patient survival. This work summarizes a critical review of recent techniques for automatic lung nodule detection in computed tomography images. This review indicates the current tendency and obtained progress as well as future challenges in this field. This research covered the databases including Web of Science, PubMed, and the Press, including IEEE Xplore and Science Direct, up to May 2018. Each part of the paper is summarized carefully in terms of the method and validation results for better comparison. Based on the results, some techniques show better performance for lung nodule detection. However, researchers should pay attention to the existing challenges, such as high sensitivity with a low false positive rate, large and different patient databases, developing or optimizing the detection technique of various types of lung nodules with different sizes, shapes, textures and locations, combining electronic medical records and picture archiving and communication systems, building efficient feature sets for better classification and promoting the cooperation and communication between academic institutions and medical organizations. We believe that automatic computer-aided detection systems will be developed with strong robustness, high efficiency and security assurance. This review will be helpful for professional researchers and radiologists to further learn about the latest techniques in computer-aided detection systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
包容的以彤完成签到 ,获得积分10
刚刚
木木木完成签到,获得积分10
刚刚
kevinqpp完成签到,获得积分10
刚刚
赘婿应助Icarus采纳,获得10
刚刚
浮游应助洞两采纳,获得10
1秒前
XUXU发布了新的文献求助10
1秒前
1秒前
17e完成签到,获得积分10
1秒前
guse完成签到 ,获得积分10
2秒前
3秒前
HaydenTtttya发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
srics完成签到,获得积分10
3秒前
vol完成签到,获得积分10
3秒前
4秒前
做自己的太阳完成签到,获得积分10
4秒前
852应助激情的随阴采纳,获得10
5秒前
yuxin完成签到 ,获得积分10
5秒前
长情的孤丝完成签到,获得积分20
5秒前
今后应助夏山采纳,获得10
5秒前
Zhang发布了新的文献求助10
6秒前
Jimmy完成签到 ,获得积分10
6秒前
蠢宝贝发布了新的文献求助10
6秒前
6秒前
6秒前
Angew来来来完成签到,获得积分10
7秒前
ping完成签到,获得积分10
7秒前
镓氧锌钇铀完成签到,获得积分0
7秒前
Owen应助渊_采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511039
求助须知:如何正确求助?哪些是违规求助? 4605776
关于积分的说明 14495459
捐赠科研通 4540877
什么是DOI,文献DOI怎么找? 2488221
邀请新用户注册赠送积分活动 1470391
关于科研通互助平台的介绍 1442806