清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-objective optimization of concrete pumping S-pipe based on DEM and NSGA-II algorithm

拉丁超立方体抽样 多目标优化 分类 遗传算法 工程类 结构工程 克里金 曲率 离散元法 算法 数学优化 计算机科学 数学 机械 几何学 统计 物理 机器学习 蒙特卡罗方法
作者
Wei Zhang,Shengqiang Jiang,Xu Li,Zhihao Chen,Guodong Cao,Ming Mei
出处
期刊:Powder Technology [Elsevier]
卷期号:434: 119314-119314 被引量:9
标识
DOI:10.1016/j.powtec.2023.119314
摘要

In the process of fresh concrete pumping, the S-pipe plays a crucial role in the pumping system. The impact and scratching of concrete aggregate on the wall of S-pipe will cause the wear of the wall and lessen its service life. The structural design of the pumping S-pipe typically relies on experience, and the cost for experiments is too expensive. In addition, the influence mechanism of structural parameters on S-pipe wear is still unclear. In view of this, to reduce the wear of S-pipe and investigate the influence of structural parameters on the wear of S-pipe, the structural parameters of S-pipe (curvature radius r1 and r2, horizontal dimension l3, and inclination angle θ) were optimised through discrete element numerical simulation combined with the non-dominated sorting genetic algorithm-II (NSGA-II) in this paper. Firstly, the wear coefficient was determined by friction and wear test. The discrete element method (DEM) model of pumping suction unit was simplified, and the S-pipe was parameterised. Secondly, sample points and their exact values of the optimization objectives were obtained by Latin hypercube sampling (LHS) plan and DEM simulations, respectively. From these, a Kriging surrogate model was constructed. Taking the average wear rate and the maximum wear of the S-pipe as the optimization objectives, a multi-objective optimization design was performed based on the NSGA-II and the Kriging models. After optimization, a series of Pareto optimal S-pipe models were obtained. Comparing the optimised model with the original model, the average wear rate and maximum wear amount of the S-pipe were reduced by 9% and 26%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gexzygg应助科研通管家采纳,获得10
24秒前
从来都不会放弃zr完成签到,获得积分10
25秒前
萝卜猪完成签到,获得积分10
32秒前
dream完成签到 ,获得积分10
34秒前
40秒前
琳io完成签到 ,获得积分10
1分钟前
laohei94_6完成签到 ,获得积分10
1分钟前
1分钟前
无花果应助紫色奶萨采纳,获得10
1分钟前
1分钟前
科研通AI2S应助arsenal采纳,获得10
1分钟前
狂野宛凝发布了新的文献求助10
1分钟前
1分钟前
光亮静槐完成签到 ,获得积分10
1分钟前
Echopotter发布了新的文献求助10
1分钟前
紫色奶萨发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Echopotter完成签到,获得积分10
1分钟前
1分钟前
Jenny发布了新的文献求助30
2分钟前
liwen发布了新的文献求助100
2分钟前
2分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
斯提亚拉发布了新的文献求助10
2分钟前
牛黄完成签到 ,获得积分10
2分钟前
Orange应助科研通管家采纳,获得20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
两个榴莲完成签到,获得积分0
3分钟前
ceeray23发布了新的文献求助30
3分钟前
3分钟前
袁青寒发布了新的文献求助10
3分钟前
zxq完成签到 ,获得积分10
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
lucky完成签到 ,获得积分10
3分钟前
绿色猫猫头完成签到 ,获得积分10
4分钟前
CodeCraft应助斯提亚拉采纳,获得10
4分钟前
wrl2023完成签到,获得积分10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
Qing完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503