Multi-objective optimization of concrete pumping S-pipe based on DEM and NSGA-II algorithm

拉丁超立方体抽样 多目标优化 分类 遗传算法 工程类 结构工程 克里金 曲率 离散元法 算法 数学优化 计算机科学 数学 机械 几何学 蒙特卡罗方法 统计 机器学习 物理
作者
Wei Zhang,Shengqiang Jiang,Xu Li,Zhihao Chen,Guodong Cao,Ming Mei
出处
期刊:Powder Technology [Elsevier]
卷期号:434: 119314-119314 被引量:3
标识
DOI:10.1016/j.powtec.2023.119314
摘要

In the process of fresh concrete pumping, the S-pipe plays a crucial role in the pumping system. The impact and scratching of concrete aggregate on the wall of S-pipe will cause the wear of the wall and lessen its service life. The structural design of the pumping S-pipe typically relies on experience, and the cost for experiments is too expensive. In addition, the influence mechanism of structural parameters on S-pipe wear is still unclear. In view of this, to reduce the wear of S-pipe and investigate the influence of structural parameters on the wear of S-pipe, the structural parameters of S-pipe (curvature radius r1 and r2, horizontal dimension l3, and inclination angle θ) were optimised through discrete element numerical simulation combined with the non-dominated sorting genetic algorithm-II (NSGA-II) in this paper. Firstly, the wear coefficient was determined by friction and wear test. The discrete element method (DEM) model of pumping suction unit was simplified, and the S-pipe was parameterised. Secondly, sample points and their exact values of the optimization objectives were obtained by Latin hypercube sampling (LHS) plan and DEM simulations, respectively. From these, a Kriging surrogate model was constructed. Taking the average wear rate and the maximum wear of the S-pipe as the optimization objectives, a multi-objective optimization design was performed based on the NSGA-II and the Kriging models. After optimization, a series of Pareto optimal S-pipe models were obtained. Comparing the optimised model with the original model, the average wear rate and maximum wear amount of the S-pipe were reduced by 9% and 26%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助淡定若采纳,获得10
2秒前
Jasper应助飞快的语蕊采纳,获得10
3秒前
明天完成签到 ,获得积分10
3秒前
锤死别人的锤完成签到,获得积分20
3秒前
3秒前
3秒前
renxuda发布了新的文献求助10
3秒前
gg应助li采纳,获得10
5秒前
wx完成签到,获得积分10
6秒前
7秒前
batman发布了新的文献求助10
7秒前
Eins完成签到,获得积分10
7秒前
轻松博超完成签到,获得积分10
8秒前
酷波er应助123456采纳,获得10
11秒前
34101127完成签到,获得积分10
12秒前
12秒前
Jasper应助blve采纳,获得10
13秒前
13秒前
w_tiger完成签到 ,获得积分10
14秒前
xfeng应助花花采纳,获得10
14秒前
16秒前
jia完成签到,获得积分20
17秒前
LXL发布了新的文献求助10
18秒前
20秒前
20秒前
感动语蝶发布了新的文献求助10
21秒前
Ellie完成签到,获得积分10
21秒前
cctv18应助Eggy采纳,获得10
22秒前
22秒前
23秒前
小薛爱吃肉完成签到 ,获得积分10
26秒前
26秒前
26秒前
优秀的zzw发布了新的文献求助10
27秒前
27秒前
挽风完成签到 ,获得积分10
28秒前
情怀应助jia采纳,获得10
30秒前
mm完成签到,获得积分10
31秒前
优秀的zzw完成签到,获得积分20
32秒前
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243839
求助须知:如何正确求助?哪些是违规求助? 2887618
关于积分的说明 8249504
捐赠科研通 2556366
什么是DOI,文献DOI怎么找? 1384479
科研通“疑难数据库(出版商)”最低求助积分说明 649858
邀请新用户注册赠送积分活动 625809