Multi-objective optimization of concrete pumping S-pipe based on DEM and NSGA-II algorithm

拉丁超立方体抽样 多目标优化 分类 遗传算法 工程类 结构工程 克里金 曲率 离散元法 算法 数学优化 计算机科学 数学 机械 几何学 统计 物理 机器学习 蒙特卡罗方法
作者
Wei Zhang,Shengqiang Jiang,Xu Li,Zhihao Chen,Guodong Cao,Ming Mei
出处
期刊:Powder Technology [Elsevier BV]
卷期号:434: 119314-119314 被引量:9
标识
DOI:10.1016/j.powtec.2023.119314
摘要

In the process of fresh concrete pumping, the S-pipe plays a crucial role in the pumping system. The impact and scratching of concrete aggregate on the wall of S-pipe will cause the wear of the wall and lessen its service life. The structural design of the pumping S-pipe typically relies on experience, and the cost for experiments is too expensive. In addition, the influence mechanism of structural parameters on S-pipe wear is still unclear. In view of this, to reduce the wear of S-pipe and investigate the influence of structural parameters on the wear of S-pipe, the structural parameters of S-pipe (curvature radius r1 and r2, horizontal dimension l3, and inclination angle θ) were optimised through discrete element numerical simulation combined with the non-dominated sorting genetic algorithm-II (NSGA-II) in this paper. Firstly, the wear coefficient was determined by friction and wear test. The discrete element method (DEM) model of pumping suction unit was simplified, and the S-pipe was parameterised. Secondly, sample points and their exact values of the optimization objectives were obtained by Latin hypercube sampling (LHS) plan and DEM simulations, respectively. From these, a Kriging surrogate model was constructed. Taking the average wear rate and the maximum wear of the S-pipe as the optimization objectives, a multi-objective optimization design was performed based on the NSGA-II and the Kriging models. After optimization, a series of Pareto optimal S-pipe models were obtained. Comparing the optimised model with the original model, the average wear rate and maximum wear amount of the S-pipe were reduced by 9% and 26%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助LQ采纳,获得10
1秒前
浪费发布了新的文献求助10
1秒前
何大青完成签到,获得积分10
2秒前
2秒前
星辰大海应助韩jl采纳,获得10
4秒前
HuangXintong发布了新的文献求助10
4秒前
4秒前
MozzieMiao完成签到 ,获得积分10
4秒前
科研通AI6应助快乐雅青采纳,获得10
5秒前
TRY发布了新的文献求助10
5秒前
FashionBoy应助afterly采纳,获得10
5秒前
手捣土豆完成签到 ,获得积分10
6秒前
漉lu发布了新的文献求助30
7秒前
执着的海发布了新的文献求助10
7秒前
7秒前
深情的晓露完成签到,获得积分10
8秒前
XYA关注了科研通微信公众号
8秒前
8秒前
薰衣草发布了新的文献求助10
9秒前
9秒前
fen发布了新的文献求助10
10秒前
上官若男应助周周采纳,获得10
11秒前
Akim应助轻松雁蓉采纳,获得10
11秒前
所所应助小宋采纳,获得10
11秒前
不三不四完成签到,获得积分10
12秒前
结实荧荧完成签到,获得积分10
12秒前
L1Young完成签到,获得积分10
12秒前
Paranoid完成签到 ,获得积分10
12秒前
追寻代真发布了新的文献求助10
12秒前
12秒前
琉璃完成签到,获得积分10
13秒前
13秒前
45发布了新的文献求助10
13秒前
李健应助zero采纳,获得10
13秒前
13秒前
14秒前
14秒前
14秒前
风灬陌完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609