Hydra: Hybrid-model federated learning for human activity recognition on heterogeneous devices

计算机科学 人工智能 移动设备 分布式计算 机器学习 启发式 方案(数学) 人机交互 数学分析 数学 操作系统
作者
P Wang,Tao Ouyang,Qiong Wu,Qianyi Huang,Jie Gong,Xu Chen
出处
期刊:Journal of Systems Architecture [Elsevier]
卷期号:147: 103052-103052
标识
DOI:10.1016/j.sysarc.2023.103052
摘要

Federated Learning (FL) has recently received extensive attention in enabling privacy-preserving edge AI services for Human Activity Recognition (HAR). However, users’ mobile and wearable devices in the HAR scenario usually possess dramatically different computing capability and diverse data distributions, making it very challenging for such heterogeneous HAR devices to conduct effective collaborative training (co-training) with the traditional FL schemes. To address this issue, we present Hydra, a Hybrid-model federated learning mechanism that facilitates the co-training among heterogeneous devices by allowing them to train models that well fit their own computing capability. Specifically, Hydra leverages BranchyNet to design a large-small global hybrid-model and enables heterogeneous devices to train the proper parts of the model tailored to their computing capability. Hydra drives co-training among the devices and clusters them based on model similarity to mitigate the impact of HAR data heterogeneity on model accuracy. In order to deal with the issue that large model may lack sufficient training data due to the limited number of high-performance devices in FL, we introduce a pairing scheme between high and low performance devices for effective co-training, and further propose sample selection approach to select more valuable samples to participate in co-training. We then formulate a constrained co-training problem within a cluster that is proved to be NP-hard and devise a fast greedy-based heuristic algorithm to solve it. In addition, to address the low accuracy of small models, we also propose a Large-to-Small knowledge distillation algorithm for resource-constrained devices to optimize the efficiency of transferring knowledge from large models to small models. We conduct extensive experiments on three HAR datasets and the experimental results demonstrate the superior performance of Hydra for achieving outstanding model accuracy improvement compared with other state-of-the-art schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
shilong.yang完成签到,获得积分10
1秒前
jy发布了新的文献求助10
2秒前
3秒前
3秒前
梦里发布了新的文献求助10
4秒前
falcon完成签到 ,获得积分10
5秒前
劈里啪啦发布了新的文献求助10
6秒前
耿强发布了新的文献求助10
6秒前
科研通AI5应助坚强的樱采纳,获得10
6秒前
陈杰发布了新的文献求助10
6秒前
nozero完成签到,获得积分10
8秒前
澜生发布了新的文献求助10
9秒前
在水一方应助惠惠采纳,获得10
9秒前
852应助zZ采纳,获得10
9秒前
小马甲应助陌路采纳,获得10
10秒前
1335804518完成签到 ,获得积分10
11秒前
11秒前
甜甜醉波完成签到,获得积分10
11秒前
科研通AI2S应助卷卷王采纳,获得10
12秒前
可爱的函函应助梦里采纳,获得10
12秒前
沐晴完成签到,获得积分10
13秒前
入夏完成签到,获得积分10
13秒前
13秒前
13秒前
苏州小北发布了新的文献求助10
14秒前
14秒前
snail完成签到,获得积分10
15秒前
劈里啪啦完成签到,获得积分10
15秒前
wanci应助Jasmine采纳,获得10
16秒前
aoxiangcaizi12完成签到,获得积分10
16秒前
ding应助通~采纳,获得30
17秒前
18秒前
Annie发布了新的文献求助10
18秒前
晨曦完成签到,获得积分10
19秒前
十一发布了新的文献求助10
19秒前
顾矜应助Peter采纳,获得30
20秒前
Ayanami完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794