Hydra: Hybrid-model federated learning for human activity recognition on heterogeneous devices

计算机科学 人工智能 移动设备 分布式计算 机器学习 启发式 方案(数学) 人机交互 数学分析 数学 操作系统
作者
P Wang,Tao Ouyang,Qiong Wu,Qianyi Huang,Jie Gong,Xu Chen
出处
期刊:Journal of Systems Architecture [Elsevier]
卷期号:147: 103052-103052
标识
DOI:10.1016/j.sysarc.2023.103052
摘要

Federated Learning (FL) has recently received extensive attention in enabling privacy-preserving edge AI services for Human Activity Recognition (HAR). However, users’ mobile and wearable devices in the HAR scenario usually possess dramatically different computing capability and diverse data distributions, making it very challenging for such heterogeneous HAR devices to conduct effective collaborative training (co-training) with the traditional FL schemes. To address this issue, we present Hydra, a Hybrid-model federated learning mechanism that facilitates the co-training among heterogeneous devices by allowing them to train models that well fit their own computing capability. Specifically, Hydra leverages BranchyNet to design a large-small global hybrid-model and enables heterogeneous devices to train the proper parts of the model tailored to their computing capability. Hydra drives co-training among the devices and clusters them based on model similarity to mitigate the impact of HAR data heterogeneity on model accuracy. In order to deal with the issue that large model may lack sufficient training data due to the limited number of high-performance devices in FL, we introduce a pairing scheme between high and low performance devices for effective co-training, and further propose sample selection approach to select more valuable samples to participate in co-training. We then formulate a constrained co-training problem within a cluster that is proved to be NP-hard and devise a fast greedy-based heuristic algorithm to solve it. In addition, to address the low accuracy of small models, we also propose a Large-to-Small knowledge distillation algorithm for resource-constrained devices to optimize the efficiency of transferring knowledge from large models to small models. We conduct extensive experiments on three HAR datasets and the experimental results demonstrate the superior performance of Hydra for achieving outstanding model accuracy improvement compared with other state-of-the-art schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈米花完成签到,获得积分10
2秒前
yyjl31完成签到,获得积分10
2秒前
Simon_chat完成签到,获得积分10
3秒前
Hank完成签到 ,获得积分10
3秒前
General完成签到 ,获得积分10
4秒前
吐司炸弹完成签到,获得积分10
5秒前
mayfly完成签到,获得积分10
5秒前
LT完成签到 ,获得积分10
5秒前
11秒前
玉鱼儿完成签到 ,获得积分10
14秒前
neal仰望应助文件撤销了驳回
14秒前
文耀海发布了新的文献求助10
15秒前
崩溃完成签到,获得积分10
18秒前
睡觉王完成签到 ,获得积分10
22秒前
李爱国应助天才小熊猫采纳,获得10
29秒前
无情的聋五完成签到 ,获得积分20
31秒前
37秒前
JJ发布了新的文献求助10
43秒前
小伊001完成签到,获得积分10
44秒前
大呲花完成签到,获得积分10
47秒前
迅速的念芹完成签到 ,获得积分10
1分钟前
JJ完成签到,获得积分10
1分钟前
小英完成签到 ,获得积分10
1分钟前
Raul完成签到 ,获得积分10
1分钟前
无为完成签到 ,获得积分10
1分钟前
大方的笑萍完成签到 ,获得积分10
1分钟前
Singularity完成签到,获得积分0
1分钟前
宸浅完成签到 ,获得积分10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
1分钟前
shepherd完成签到 ,获得积分10
1分钟前
风起枫落完成签到 ,获得积分10
1分钟前
瘦瘦天奇完成签到 ,获得积分10
1分钟前
海豚完成签到 ,获得积分10
1分钟前
2分钟前
我独舞完成签到 ,获得积分10
2分钟前
2分钟前
likw23完成签到 ,获得积分10
2分钟前
emxzemxz完成签到 ,获得积分10
2分钟前
啦啦啦完成签到 ,获得积分10
2分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793684
关于积分的说明 7807147
捐赠科研通 2450016
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350