环肽
化学
膜透性
深度学习
肽
细胞通透性
人工智能
膜
数量结构-活动关系
计算生物学
机器学习
计算机科学
生物化学
立体化学
生物
作者
Lujing Cao,Zhenyu Xu,Tianfeng Shang,Chengyun Zhang,Xinyi Wu,Yejian Wu,Silong Zhai,Zha‐Jun Zhan,Hongliang Duan
标识
DOI:10.1021/acs.jmedchem.3c01611
摘要
Cyclic peptides are gaining attention for their strong binding affinity, low toxicity, and ability to target "undruggable" proteins; however, their therapeutic potential against intracellular targets is constrained by their limited membrane permeability, and researchers need much time and money to test this property in the laboratory. Herein, we propose an innovative multimodal model called Multi_CycGT, which combines a graph convolutional network (GCN) and a transformer to extract one- and two-dimensional features for predicting cyclic peptide permeability. The extensive benchmarking experiments show that our Multi_CycGT model can attain state-of-the-art performance, with an average accuracy of 0.8206 and an area under the curve of 0.8650, and demonstrates satisfactory generalization ability on several external data sets. To the best of our knowledge, it is the first deep learning-based attempt to predict the membrane permeability of cyclic peptides, which is beneficial in accelerating the design of cyclic peptide active drugs in medicinal chemistry and chemical biology applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI